
A* Algorithm Concepts and

Implementation
.

A* (pronounced "A-star") is a graph traversal and path search algorithm, which is
used in many fields of computer science due to its completeness, optimality, and

optimal efficiency.[1] One major practical drawback is its space complexity,
as it stores all generated nodes in memory. Thus, in practical travel-routing
systems, it is generally outperformed by algorithms that can pre-process the
graph to attain better performance,[2] as well as memory-bounded approaches;
however, A* is still the best solution in many cases.[3]

Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute
(now SRI International) first published the algorithm in 1968.[4] It can be seen as
an extension of Dijkstra's algorithm. A* achieves better performance by
using heuristics to guide its search.

Compared to Dijkstra's algorithm, the A* algorithm only finds the shortest path
from a specified source to a specified goal, and not the shortest-path tree from a
specified source to all possible goals. This is a necessary trade-off for using a
specific-goal-directed heuristic. For Dijkstra's algorithm, since the entire shortest-
path tree is generated, every node is a goal, and there can be no specific-goal-
directed heuristic.

What is an A* Algorithm?

It is a searching algorithm that is used to find the shortest path between an
initial and a final point.

It is a handy algorithm that is often used for map traversal to find the shortest

path to be taken. A* was initially designed as a graph traversal problem, to

help build a robot that can find its own course. It still remains a widely
popular algorithm for graph traversal.

https://en.wikipedia.org/wiki/Graph_traversal
https://en.wikipedia.org/wiki/Pathfinding
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-:2-1
https://en.wikipedia.org/wiki/Space_complexity
https://en.wikipedia.org/wiki/Travel-routing_system
https://en.wikipedia.org/wiki/Travel-routing_system
https://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-2
https://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-Zeng-3
https://en.wikipedia.org/wiki/Peter_E._Hart
https://en.wikipedia.org/wiki/Nils_Nilsson_(researcher)
https://en.wikipedia.org/wiki/Bertram_Raphael
https://en.wikipedia.org/wiki/SRI_International
https://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-nilsson-4
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Heuristic_(computer_science)

It searches for shorter paths first, thus making it an optimal and complete

algorithm. An optimal algorithm will find the least cost outcome for a

problem, while a complete algorithm finds all the possible outcomes of a
problem.

Another aspect that makes A* so powerful is the use of weighted graphs in its

implementation. A weighted graph uses numbers to represent the cost of

taking each path or course of action. This means that the algorithms can take

the path with the least cost, and find the best route in terms of distance and
time.

Figure 1: Weighted Graph

A major drawback of the algorithm is its space and time complexity. It takes

a large amount of space to store all possible paths and a lot of time to find
them.

Why A* Search Algorithm?

A* Search Algorithm is a simple and efficient search algorithm that can be

used to find the optimal path between two nodes in a graph. It will be used

for the shortest path finding. It is an extension of Dijkstra’s shortest path

algorithm (Dijkstra’s Algorithm). The extension here is that, instead of using

a priority queue to store all the elements, we use heaps (binary trees) to store
them. The A* Search Algorithm also uses a heuristic function that provides

additional information regarding how far away from the goal node we are.

This function is used in conjunction with the f-heap data structure in order to
make searching more efficient.

Let us now look at a brief explanation of the A* algorithm.

Explanation

In the event that we have a grid with many obstacles and we want to get

somewhere as rapidly as possible, the A* Search Algorithms are our savior.

From a given starting cell, we can get to the target cell as quickly as possible.

It is the sum of two variables’ values that determines the node it picks at any
point in time.

At each step, it picks the node with the smallest value of ‘f’ (the sum of ‘g’

and ‘h’) and processes that node/cell. ‘g’ and ‘h’ is defined as simply as
possible below:

 ‘g’ is the distance it takes to get to a certain square on the grid from the

starting point, following the path we generated to get there.

 ‘h’ is the heuristic, which is the estimation of the distance it takes to get to

the finish line from that square on the grid.

Heuristics are basically educated guesses. It is crucial to understand that we

do not know the distance to the finish point until we find the route since there

are so many things that might get in the way (e.g., walls, water, etc.). In the
coming sections, we will dive deeper into how to calculate the heuristics.

Let us now look at the detailed algorithm of A*.

Algorithm

Initial condition - we create two lists - Open List and Closed List.

Now, the following steps need to be implemented -

 The open list must be initialized.

 Put the starting node on the open list (leave its f at zero). Initialize the

closed list.

 Follow the steps until the open list is non-empty:

1. Find the node with the least f on the open list and name it “q”.

2. Remove Q from the open list.

3. Produce q's eight descendants and set q as their parent.

4. For every descendant:

i) If finding a successor is the goal, cease looking

ii)Else, calculate g and h for the successor.

successor.g = q.g + the calculated distance between the successor and the q.

successor.h = the calculated distance between the successor and the goal. We

will cover three heuristics to do this: the Diagonal, the Euclidean, and the
Manhattan heuristics.

successor.f = successor.g plus successor.h

iii) Skip this successor if a node in the OPEN list with the same location as it
but a lower f value than the successor is present.

iv) Skip the successor if there is a node in the CLOSED list with the same

position as the successor but a lower f value; otherwise, add the node to the
open list end (for loop).

 Push Q into the closed list and end the while loop.

We will now discuss how to calculate the Heuristics for the nodes.

Heuristics

We can easily calculate g, but how do we actually calculate h?

There are two methods that we can use to calculate the value of h:

1. Determine h's exact value (which is certainly time-consuming).

(or)

2. Utilize various techniques to approximate the value of h. (less time-
consuming).

Let us discuss both methods.

Exact Heuristics

Although we can obtain exact values of h, doing so usually takes a very long
time.

The ways to determine h's precise value are listed below.

1. Before using the A* Search Algorithm, pre-calculate the distance between
every pair of cells.

2. Using the distance formula/Euclidean Distance, we may directly determine
the precise value of h in the absence of blocked cells or obstructions.

Let us look at how to calculate Approximation Heuristics.

Approximation Heuristics

To determine h, there are typically three approximation heuristics:

1. Manhattan Distance

The Manhattan Distance is the total of the absolute values of the

discrepancies between the x and y coordinates of the current and the goal
cells.

The formula is summarized below -

h = abs (curr_cell.x – goal.x) +

 abs (curr_cell.y – goal.y)

We must use this heuristic method when we are only permitted to move in
four directions - top, left, right, and bottom.

Let us now take a look at the Diagonal Distance method to calculate the
heuristic.

2. Diagonal Distance

It is nothing more than the greatest absolute value of differences between the
x and y coordinates of the current cell and the goal cell.

This is summarized below in the following formula -

dx = abs(curr_cell.x – goal.x)

dy = abs(curr_cell.y – goal.y)

h = D * (dx + dy) + (D2 - 2 * D) * min(dx, dy)

where D is the length of every node (default = 1) and D2 is the diagonal

We use this heuristic method when we are permitted to move only in eight
directions, like the King’s moves in Chess.

Let us now take a look at the Euclidean Distance method to calculate the
heuristic.

3. Euclidean Distance

The Euclidean Distance is the distance between the goal cell and the current
cell using the distance formula:

 h = sqrt ((curr_cell.x – goal.x)^2 +

 (curr_cell.y – goal.y)^2)

We use this heuristic method when we are permitted to move in any direction
of our choice.

The Basic Concept of A* Algorithm

A heuristic algorithm sacrifices optimality, with precision and accuracy for
speed, to solve problems faster and more efficiently.

All graphs have different nodes or points which the algorithm has to take, to

reach the final node. The paths between these nodes all have a numerical

value, which is considered as the weight of the path. The total of all paths
transverse gives you the cost of that route.

Initially, the Algorithm calculates the cost to all its immediate neighboring

nodes,n, and chooses the one incurring the least cost. This process repeats

until no new nodes can be chosen and all paths have been traversed. Then,

you should consider the best path among them. If f(n) represents the final
cost, then it can be denoted as :

f(n) = g(n) + h(n), where :

g(n) = cost of traversing from one node to another. This will vary from node
to node

h(n) = heuristic approximation of the node's value. This is not a real value but
an approximation cost

How Does the A* Algorithm Work?

Figure 2: Weighted Graph 2

Consider the weighted graph depicted above, which contains nodes and the
distance between them. Let's say you start from A and have to go to D.

Now, since the start is at the source A, which will have some initial heuristic
value. Hence, the results are

f(A) = g(A) + h(A)
f(A) = 0 + 6 = 6

Next, take the path to other neighbouring vertices :

f(A-B) = 1 + 4

f(A-C) = 5 + 2

Now take the path to the destination from these nodes, and calculate the
weights :

f(A-B-D) = (1+ 7) + 0

f(A-C-D) = (5 + 10) + 0

It is clear that node B gives you the best path, so that is the node you need to
take to reach the destination.

Pseudocode of A* Algorithm

The text below represents the pseudocode of the Algorithm. It can be used to

implement the algorithm in any programming language and is the basic logic
behind the Algorithm.

 Make an open list containing starting node

 If it reaches the destination node :

 Make a closed empty list

 If it does not reach the destination node, then consider a node with the

lowest f-score in the open list

We are finished

 Else :

Put the current node in the list and check its neighbors

 For each neighbor of the current node :

 If the neighbor has a lower g value than the current node and is in the

closed list:

https://www.simplilearn.com/best-programming-languages-start-learning-today-article

Replace neighbor with this new node as the neighbor’s parent

 Else If (current g is lower and neighbor is in the open list):

Replace neighbor with the lower g value and change the neighbor’s parent to
the current node.

 Else If the neighbor is not in both lists:

Add it to the open list and set its g

How to Implement the A* Algorithm in Python?

Consider the graph shown below. The nodes are represented in pink circles,

and the weights of the paths along the nodes are given. The numbers above
the nodes represent the heuristic value of the nodes.

Figure 3: Weighted graph for A* Algorithm

You start by creating a class for the algorithm. Now, describe the open and
closed lists. Here, you are using sets and two dictionaries - one to store the

distance from the starting node, and another for parent nodes. And initialize
them to 0, and the start node.

Figure 4: Initializing important parameters

Now, find the neighboring node with the lowest f(n) value. You must

also code for the condition of reaching the destination node. If this is not the

case, put the current node in the open list if it's not already on it, and set its
parent nodes.

Figure 5: Adding nodes to open list and setting parents of nodes

If the neighbor has a lower g value than the current node and is in the closed
list, replace it with this new node as the neighbor's parent.

https://www.simplilearn.com/free-and-low-cost-online-resources-for-practicing-code-article

Figure 6: Checking distances and updating the g values

If the current g is lower than the previous g, and its neighbor is in the open

list, replace it with the lower g value and change the neighbor's parent to the
current node.

If the neighbor is not in both lists, add it to the open list and set its g value.

Figure 7: Checking distances, updating the g values, and adding parents

Now, define a function to return neighbors and their distances.

 Figure 8: Defining neighbors

Also, create a function to check the heuristic values.

Figure 9: Defining a function to return heuristic values

Let’s describe our graph and call the A star function.

Figure 10: Calling A* function

The algorithm traverses through the graph and finds the path with the least
cost

 which is through E => D => G.

	A* Algorithm Concepts and Implementation
	What is an A* Algorithm?
	Explanation

	Algorithm
	Heuristics
	Exact Heuristics
	Approximation Heuristics
	1. Manhattan Distance
	2. Diagonal Distance
	3. Euclidean Distance

	The Basic Concept of A* Algorithm
	How Does the A* Algorithm Work?
	Pseudocode of A* Algorithm
	How to Implement the A* Algorithm in Python?

