
Backpropagation

Backpropagation, short for "backward propagation of errors," is an algorithm for

supervised learning of artificial neural networks using gradient descent. Given an

artificial neural network and an error function, the method calculates the gradient of the

error function with respect to the neural network's weights. It is a generalization of the

delta rule for perceptrons to multilayer feedforward neural networks.

What is backpropagation?

 In machine learning, backpropagation is an effective algorithm used to train
artificial neural networks, especially in feed-forward neural networks.

 Backpropagation is an iterative algorithm, that helps to minimize the cost function
by determining which weights and biases should be adjusted. During every epoch,
the model learns by adapting the weights and biases to minimize the loss by
moving down toward the gradient of the error. Thus, it involves the two most
popular optimization algorithms, such as gradient descent or stochastic gradient
descent.

 Computing the gradient in the backpropagation algorithm helps to minimize
the cost function and it can be implemented by using the mathematical rule called
chain rule from calculus to navigate through complex layers of the neural network.

Backpropagation is analogous to calculating the delta rule for a multilayer feedforward

network. Thus, like the delta rule, backpropagation requires three things:

Backpropagation

https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/gradient-descent/
https://brilliant.org/wiki/artificial-neural-network/#training-the-model
https://www.geeksforgeeks.org/gradient-descent-algorithm-and-its-variants/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.geeksforgeeks.org/what-is-cost-function/

Working of Backpropagation Algorithm
The Backpropagation algorithm works by two different passes, they are:
 Forward pass
 Backward pass
How does Forward pass work?

 In forward pass, initially the input is fed into the input layer. Since the
inputs are raw data, they can be used for training our neural network.

 The inputs and their corresponding weights are passed to the hidden
layer. The hidden layer performs the computation on the data it
receives. If there are two hidden layers in the neural network, for
instance, consider the illustration fig(a), h1 and h2 are the two hidden
layers, and the output of h1 can be used as an input of h2. Before
applying it to the activation function, the bias is added.

 To the weighted sum of inputs, the activation function is applied in the
hidden layer to each of its neurons. One such activation function that is
commonly used is ReLU can also be used, which is responsible for

returning the input if it is positive otherwise it returns zero. By doing this
so, it introduces the non-linearity to our model, which enables the
network to learn the complex relationships in the data. And finally, the
weighted outputs from the last hidden layer are fed into the output to
compute the final prediction, this layer can also use the activation
function called the softmax function which is responsible for converting
the weighted outputs into probabilities for each class.

How does backward pass work?

 In the backward pass process shows, the error is transmitted back to the network
which helps the network, to improve its performance by learning and adjusting the
internal weights.

 To find the error generated through the process of forward pass, we can use one
of the most commonly used methods called mean squared error which calculates
the difference between the predicted output and desired output. The formula for
mean squared error is:

 Meansquarederror=(predictedoutput–actualoutput)2

 Once we have done the calculation at the output layer, we then propagate the
error backward through the network, layer by layer.

 The key calculation during the backward pass is determining the gradients for
each weight and bias in the network. This gradient is responsible for telling us
how much each weight/bias should be adjusted to minimize the error in the next
forward pass. The chain rule is used iteratively to calculate this gradient
efficiently.

 In addition to gradient calculation, the activation function also plays a crucial role
in backpropagation, it works by calculating the gradients with the help of the
derivative of the activation function.

Implementing forward propagation:

Step1: Before proceeding to calculating forward propagation, we need to
know the two formulae:
aj=∑(wi,j∗xi)

Where,
 aj is the weighted sum of all the inputs and weights at each node,
 wi,j – represents the weights associated with the jth input to the

ith neuron,
 xi – represents the value of the jth input,
yj=F(aj)=1/(1+eaj) is the output value, F denotes the activation function
[sigmoid activation function is used here), which transforms the weighted
sum into the output value.
Step 2: To compute the forward pass, we need to compute the
output for y3 , y4 , and y5.

We start by calculating the weights and inputs by using the formula:
aj=∑(wi,j∗xi) To find y3 , we need to consider its incoming edges along

with its weight and input. Here the incoming edges are from X1 and X2.

Note that, our actual output is 0.5 but we obtained 0.67. To calculate the
error, we can use the below formula:
Errorj=ytarget–y5
Error = 0.5 – 0.67
= -0.17
Using this error value, we will be backpropagating.

Implementing Backward Propagation

Each weight in the network is changed by,
∇wij = η ?j Oj
?j = Oj (1-Oj)(tj - Oj) (if j is an output unit)
?j = Oj (1-O)∑k ?k wkj (if j is a hidden unit)
where ,

η is the constant which is considered as learning rate,
tj is the correct output for unit j
?j is the error measure for unit j
Step 3: To calculate the backpropagation, we need to start from the
output unit:
To compute the ?5, we need to use the output of forward pass,
?5 = y5(1-y5) (ytarget -y5)
= 0.67(1-0.67) (-0.17)
= -0.0376
For hidden unit,

To compute the hidden unit, we will take the value of ?5
?3 = y3(1-y3) (w1,3 * ?5)
=0.56(1-0.56) (0.3*-0.0376)
=-0.0027
?4 = y4 (1-y5) (w2,3 * ?5)
=0.59(1-0.59) (0.9*-0.0376)
=-0.0819
Step 4: We need to update the weights, from output unit to hidden
unit,

∇ wj,i = η ?j Oj

Note- Here our learning rate is 1

∇ w2,3 = η ?5 O4
= 1 * (-0.376) * 0.59
= -0.22184

We will be updating the weights based on the old weight of the network,
w2,3(new) = ∇ w4,5 + w4,5 (old)
= -0.22184 + 0.9
= 0.67816
From hidden unit to input unit,
For an hidden to input node, we need to do calculations by the following;
∇ w1,1 = η ?3 O4
= 1 * (-0.0027) * 0.35
= 0.000945
Similarly, we need to calculate the new weight value using the old one:

w1,1(new) = ∇ w1,1+ w1,1 (old)
= 0.000945 + 0.2
= 0.200945
Similarly, we update the weights of the other neurons: The new
weights are mentioned below

w1,2 (new) = 0.271335
w1,3 (new) = 0.08567
w2,1 (new) = 0.29811
w2,2 (new) = 0.24267
The updated weights are illustrated below,

Through backward pass the weights are updated

Once, the above process is done, we again perform the forward pass to
find if we obtain the actual output as 0.5.
While performing the forward pass again, we obtain the following values:
y3 = 0.57
y4 = 0.56
y5 = 0.61
We can clearly see that our y5 value is 0.61 which is not an expected
actual output, So again we need to find the error and backpropagate
through the network by updating the weights until the actual output is
obtained.
Error=ytarget–y5
= 0.5 – 0.61
= -0.11
This is how the backpropagate works, it will be performing the forward
pass first to see if we obtain the actual output, if not we will be finding the
error rate and then backpropagating backwards through the layers in the
network by adjusting the weights according to the error rate. This process
is said to be continued until the actual output is gained by the neural
network.

	What is backpropagation?
	Working of Backpropagation Algorithm
	How does Forward pass work?
	How does backward pass work?
	Implementing forward propagation:
	Implementing Backward Propagation

