
Convolutional Neural Network (CNN) 

 

What is a Convolutional Neural Network (CNN)? 

A Convolutional Neural Network (CNN), also known as ConvNet, is a specialized 

type of deep learning algorithm mainly designed for tasks that necessitate object 

recognition, including image classification, detection, and segmentation. CNNs are 

employed in a variety of practical scenarios, such as autonomous vehicles, security 

camera systems, and others. 

Key Components of a CNN 

The convolutional neural network is made of four main parts. 

But how do CNNs Learn with those parts? 

They help the CNNs mimic how the human brain operates to recognize patterns and 

features in images: 

 Convolutional layers 

 Rectified Linear Unit (ReLU for short) 

 Pooling layers 

 Fully connected layers 

This section dives into the definition of each one of these components through the 

example of the following example of classification of a handwritten digit. 

 

Architecture of the CNNs applied to digit recognition  

Convolution layers 



This is the first building block of a CNN. As the name suggests, the main 

mathematical task performed is called convolution, which is the application of 

a sliding window function to a matrix of pixels representing an image. The 

sliding function applied to the matrix is called kernel or filter, and both can be 

used interchangeably. 

In the convolution layer, several filters of equal size are applied, and each filter 

is used to recognize a specific pattern from the image, such as the curving of 

the digits, the edges, the whole shape of the digits, and more. 

Put simply, in the convolution layer, we use small grids (called filters or 

kernels) that move over the image. Each small grid is like a mini magnifying 

glass that looks for specific patterns in the photo, like lines, curves, or shapes. 

As it moves across the photo, it creates a new grid that highlights where it 

found these patterns. 

For example, one filter might be good at finding straight lines, another might 

find curves, and so on. By using several different filters, the CNN can get a 

good idea of all the different patterns that make up the image. 

Let’s consider this 32x32 grayscale image of a handwritten digit. The values in 

the matrix are given for illustration purposes. 

 

Illustration of the input image and its pixel representation 

Also, let’s consider the kernel used for the convolution. It is a matrix with a 

dimension of 3x3. The weights of each element of the kernel is represented in 

the grid. Zero weights are represented in the black grids and ones in the white 

grid. 



Do we have to manually find these weights? 

In real life, the weights of the kernels are determined during the training 

process of the neural network. 

Using these two matrices, we can perform the convolution operation by 

applying the dot product, and work as follows: 

1. Apply the kernel matrix from the top-left corner to the right. 

2. Perform element-wise multiplication. 

3. Sum the values of the products. 

4. The resulting value corresponds to the first value (top-left corner) in the 

convoluted matrix. 

5. Move the kernel down with respect to the size of the sliding window. 

6. Repeat steps 1 to 5 until the image matrix is fully covered. 

The dimension of the convoluted matrix depends on the size of the sliding 

window. The higher the sliding window, the smaller the dimension. 

 

Application of the convolution task using a stride of 1 with 3x3 kernel 

Another name associated with the kernel in the literature is feature detector 

because the weights can be fine-tuned to detect specific features in the input 

image. 

For instance: 



 Averaging neighboring pixels kernel can be used to blur the input 

image. 

 Subtracting neighboring kernel is used to perform edge detection. 

The more convolution layers the network has, the better the layer is at 

detecting more abstract features. 

Activation function 

A ReLU activation function is applied after each convolution operation. This 

function helps the network learn non-linear relationships between the features 

in the image, hence making the network more robust for identifying different 

patterns. It also helps to mitigate the vanishing gradient problems. 

Pooling layer 

The goal of the pooling layer is to pull the most significant features from the 

convoluted matrix. This is done by applying some aggregation operations, 

which reduce the dimension of the feature map (convoluted matrix), hence 

reducing the memory used while training the network. Pooling is also relevant 

for mitigating overfitting. 

The most common aggregation functions that can be applied are: 

 Max pooling, which is the maximum value of the feature map 

 Sum pooling corresponds to the sum of all the values of the feature map 

 Average pooling is the average of all the values. 

Below is an illustration of each of the previous example: 



 

Application of max pooling with a stride of 2 using 2x2 filter 

Also, the dimension of the feature map becomes smaller as the pooling 

function is applied. 

The last pooling layer flattens its feature map so that it can be processed by 

the fully connected layer. 

Fully connected layers 

These layers are in the last layer of the convolutional neural network, and their 

inputs correspond to the flattened one-dimensional matrix generated by the 

last pooling layer. ReLU activations functions are applied to them for non-

linearity. 

Finally, a softmax prediction layer is used to generate probability values for 

each of the possible output labels, and the final label predicted is the one with 

the highest probability score. 

Overfitting and Regularization in CNNs 

Overfitting is a common challenge in machine learning models and CNN deep 

learning projects. It happens when the model learns the training data too well 

(“learning by heart”), including its noise and outliers. Such a learning leads to 

a model that performs well on the training data but badly on new, unseen data. 

This can be observed when the performance on training data is too low 

compared to the performance on validation or testing data, and a graphical 

illustration is given below: 



 

Underfitting Vs. Overfitting 

Deep learning models, especially Convolutional Neural Networks (CNNs), are 

particularly susceptible to overfitting due to their capacity for high complexity 

and their ability to learn detailed patterns in large-scale data. 

Several regularization techniques can be applied to mitigate overfitting in 

CNNs, and some are illustrated below: 

 

7 strategies to mitigate overfitting in CNNs 

 Dropout: This consists of randomly dropping some neurons during the 

training process, which forces the remaining neurons to learn new 

features from the input data. 

 Batch normalization: The overfitting is reduced at some extent by 

normalizing the input layer by adjusting and scaling the activations. This 

approach is also used to speed up and stabilize the training process. 

 Pooling Layers: This can be used to reduce the spatial dimensions of 

the input image to provide the model with an abstracted form of 

representation, hence reducing the chance of overfitting. 

 Early stopping: This consists of consistently monitoring the model’s 

performance on validation data during the training process and 

stopping the training whenever the validation error does not improve 

anymore. 



 Noise injection: This process consists of adding noise to the inputs or 

the outputs of hidden layers during the training to make the model more 

robust and prevent it from a weak generalization. 

 L1 and L2 normalizations: Both L1 and L2 are used to add a penalty to 

the loss function based on the size of weights. More specifically, L1 

encourages the weights to be spare, leading to better feature selection. 

On the other hand, L2 (also called weight decay) encourages the 

weights to be small, preventing them from having too much influence on 

the predictions. 

 Data augmentation: This is the process of artificially increasing the size 

and diversity of the training dataset by applying random transformations 

like rotation, scaling, flipping, or cropping to the input images. 

 

  



 

 



Convolutional layer: 

In a CNN, the input is a tensor with shape: 

(number of inputs) × (input height) × (input width) × (input channels) 

After passing through a convolutional layer, the image becomes 

abstracted to a feature map, also called an activation map, with shape: 

(number of inputs) × (feature map height) × (feature map width) × 

(feature map channels). 

Convolutional layers convolve the input and pass its result to the next 

layer. This is similar to the response of a neuron in the visual cortex to a 

specific stimulus. Each convolutional neuron processes data only for 

its receptive field. 

 

 

https://en.wikipedia.org/wiki/Tensor_(machine_learning)
https://en.wikipedia.org/wiki/Channel_(digital_image)
https://en.wikipedia.org/wiki/Channel_(digital_image)
https://en.wikipedia.org/wiki/Receptive_field


 

  



 

 

 



 

 

 

 



Same way last but one Step 

 

 



 

 

 

  



ReLU layer 

ReLU applies the non-saturating activation function. It effectively 

removes negative values from an activation map by setting them to 

zero.[91] It introduces nonlinearity to the decision function and in the 

overall network without affecting the receptive fields of the convolution 

layers.  

 

 

 

  

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Convolutional_neural_network#cite_note-Romanuke4-93
https://en.wikipedia.org/wiki/Nonlinearity_(disambiguation)
https://en.wikipedia.org/wiki/Decision_boundary


Step-2 : Max Pooling 

Another important concept of CNNs is pooling, which is a form of non-

linear down-sampling. There are several non-linear functions to 

implement pooling, where max pooling is the most common. 

It partitions the input image into a set of rectangles and, for each such 

sub-region, outputs the maximum. 

A channel max pooling (CMP) operation layer conducts the MP 

operation along the channel side among the corresponding positions of 

the consecutive feature maps for the purpose of redundant information 

elimination. The CMP makes the significant features gather together 

within fewer channels, which is important for fine-grained image 

classification that needs more discriminating features. Meanwhile, 

another advantage of the CMP operation is to make the channel number 

of feature maps smaller before it connects to the first fully connected 

(FC) layer. Similar to the MP operation, we denote the input feature 

maps and output feature maps of a CMP layer as F ∈ R(C×M×N) and C 

∈ R(c×M×N), respectively, where C and c are the channel numbers of 

the input and output feature maps, M and N are the widths and the 

height of the feature maps, respectively. 

 

https://en.wikipedia.org/wiki/Downsampling_(signal_processing)
https://en.wikipedia.org/wiki/Partition_of_a_set


 

 



 

 

 



 

  



Step-3: Flattening 

 

 

 



 

 

Full Connection 

 

The purpose of the fully connected layer in a convolutional neural network is to 

detect certain features in an image. More specifically, each neuron in the fully 

connected layer corresponds to a specific feature that might be present in an image. 

The value that the neuron passes on to the next layer represents the probability that 

the feature is contained in the image. 

 

 



 

 

 

 

  



Softmax and Cross-Entropy 

 

Multiclass classification is an application of deep learning/machine 

learning where the model is given input and renders a categorical output 

corresponding to one of the labels that form the output. For example, 

providing a set of images of animals and classifying it among cats, dogs, 

horses, etc. 

For this purpose, where the model outputs multiple outputs for each 

class, a simple logistic function (or sigmoid function) cannot be used. 

Thus, another activation function called the Softmax function is used 

along with the cross-entropy loss. 

Softmax Function: 

The softmax formula is represented as: 

softmax function image 

 

  

where the values of zi are the elements of the input vector and they can 

take any real value. The denominator of the formula is normalised term 

which guarantees that all the output values of the function will sum to 1, 

thus making it a valid probability distribution. 

The softmax function and the sigmoid function are similar to each other. 

Softmax operates on vector values while the sigmoid takes scalar 

values. Thus, we can say that sigmoid function is a specific case of the 

softmax function and it is for a classifier with only two input classes. The 

logistic function, often known as the logistic sigmoid function, is the most 

common object of the word “sigmoid function” in the context of machine 

learning. Mathematically, it is defined by: 

     



 

  

The above function is used for classification between 2 classes, i.e., 1 

and 0. In the case of Multiclass classification, the softmax function is 

used. The softmax converts the output for each class to a probability 

value (between 0-1), which is exponentially normalized among the 

classes.  

 

 

 



 

 

 



 

 


