
Classification 
In machine learning, classification is a type of supervised learning technique 

where an algorithm is trained on a labeled dataset to predict the class or category of 
new, unseen data. The main objective of classification is to build a model that can 
accurately assign a label or category to a new observation based on its features. 
Classification algorithms can be broadly classified into binary and multi-
class classifiers. Binary classifiers are used when the classification problem has only 
two possible outcomes, such as “Yes” or “No”, “Male” or “Female”, “Spam” or “Not 
Spam”, “Cat” or “Dog”, etc. Multi-class classifiers are used when a classification 
problem has more than two outcomes, such as classifications of types of crops, 
types of music, etc. 
 

 

 

Unlike regression where you predict a continuous number, you use classification to predict a 

category. There is a wide variety of classification applications from medicine to marketing. 

Classification models include linear models like Logistic Regression, SVM, and nonlinear 

ones like K-NN, Kernel SVM and Random Forests. 

In this part, you will understand and learn how to implement the following Machine Learning 

Classification models: 

1. Logistic Regression 

2. K-Nearest Neighbors (K-NN) 

3. Support Vector Machine (SVM) 

4. Kernel SVM 

5. Naive Bayes 

6. Decision Tree Classification 

7. Random Forest Classification 
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Logistic Regression in Machine Learning 

Logistic regression is a supervised machine learning algorithm mainly used for classification tasks 
where the goal is to predict the probability that an instance belongs to a given class or not. It is a kind 

of statistical algorithm, which analyzes the relationship between a set of independent variables and the 

dependent binary variables. Logistic regression is a powerful tool for decision-making. 

Logistic regression is a supervised machine learning algorithm mainly used for 

binary classification where we use a logistic function, also known as a sigmoid 

function that takes input as independent variables and produces a probability value 

between 0 and 1. 

Logistic Regression for Single Independent variable: 

 

Base on the Logistic Regression 35 years age would not purchase insurance but 45 

years age would purchase insurance. 

Multiple Independents Variable for Logistic Regression:

 

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/getting-started-with-classification/


Logistic regression - Maximum Likelihood Estimation 

In logistic regression, the maximum likelihood estimation (MLE) is used to estimate 
the parameters of the model. The goal of MLE is to find the set of parameters that 
maximize the likelihood function, which is the probability of observing the data given 
the model parameters. The likelihood function is a product of probabilities of observing 
each data point, given the model parameters. The parameters are estimated by 
maximizing the log-likelihood function, which is the natural logarithm of the likelihood 
function. The maximum likelihood estimates of the parameters are the values that 
maximize the log-likelihood function. 
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Dataset: Social_Network_Ads 

 

 

 

On data classification model trained and need to predict which customer buy brand new 

model SUV. Our model will be trained on different Age, EstimatedSalary (both independent 

variable) and also purchase (dependent variable). Purchase ‘0’ mean customer didn’t buy 

any previous SUV and ‘1’ mean bought previous SUV. Future prediction purchase ‘1’ high 

chance to purchase New model SUV. Predicted model will target the customer and Advertise 

team use the result of predicted model and optimize the target the future customer that’s 

why name of the dataset is Social_Network_Ads. 

 

Python Code: 

**Logistic Regression is linear models. You will get all code related to logistic regression 

from scikit-learn. Go to scikit-learn then API, API reference  classification Linear 

Models all the linear models you will get logistic regression and click on it you will get 

complete class of Logistic Regression.  

Importing the libraries 

import numpy as np 

import matplotlib.pyplot as plt 



import pandas as pd 

 

Importing the dataset 

dataset = pd.read_csv('Social_Network_Ads.csv') 

X = dataset.iloc[:, :-1].values 

y = dataset.iloc[:, -1].values 

 

** Importing libraries and dataset are the same as data preprocessing.  

Splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 

0.25, random_state = 0) 

 

print(X_train) 

 

** Dataset has 400 customer that’s why test_size=0.25 mean 300 for training and 100 for 

test set 

 

O/P: [    39 106000] 

 [    37  57000] 

 [    26  72000] 

 [    35  23000] 

 [    54 108000] 

 [    30  17000] 

 [    39 134000] 

 [    29  43000] 

 [    33  43000] 

…………………………………. 

…………………………………. 

 

print(y_train) 

 O/P: 

[0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0 

0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 

1 0 1 ……. 

…… 
0 0 0 0] 
 

print(X_test) 

 
O/P:  
 [    27  84000] 



 [    35  20000] 

 [    43 112000] 

 [    27  58000] 

 [    37  80000] 

 [    52  90000] 

 [    26  30000] 

  …………………………….. 

  ……………………………… 

 

 

print(y_test) 

 
O/P:  

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 

0 0……… 1 1] 

 

Feature Scaling 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

 

** All the features (Age and EstimatedSalary) are same scale. 

 

print(X_train) 

O/P: 

 [ 0.08648817  1.05583366] 

 [-0.11157634 -0.3648304 ] 

 [-1.20093113  0.07006676] 

 [-0.30964085 -1.3505973 ] 

 [ 1.57197197  1.11381995] 

 [-0.80480212 -1.52455616] 

 [ 0.08648817  1.8676417 ] 

 ….    ….  …      … …. 

 

print(X_test) 

O/P: 

 [-1.10189888  0.41798449] 

 [-0.30964085 -1.43757673] 

 [ 0.48261718  1.22979253] 

 [-1.10189888 -0.33583725] 

 [-0.11157634  0.30201192] 

 [ 1.37390747  0.59194336] 

 [-1.20093113 -1.14764529] 

   …………………………………………………… 



   …………………………………………….. 

 

Training the Logistic Regression model on the Training set 

from sklearn.linear_model import LogisticRegression 

classifier = LogisticRegression(random_state = 0) 

classifier.fit(X_train, y_train) 

 

** sklearn.linear_model this is the model; LogisticRegression is the 

class; Here no parameter is required because simple logistic regression 

so random_state=0; classifier.fit method trained the logistic 

regression as X_train and y_train 

 

Predicting a new result 

print(classifier.predict(sc.transform([[30,87000]]))) 

 

** predict method for single observation. Purchase decision 1st customer whose is 30 and 

estimate salary 87000. Whether this customer bought SUV Yes or No. Our prediction Y test 

or result is 0 mean customer SUV not bought.  So, prediction correct.  

O/P: [0] 

Predicting the Test set results 

y_pred = classifier.predict(X_test) 

print(np.concatenate((y_pred.reshape(len(y_pred),1), 

y_test.reshape(len(y_test),1)),1)) 

 

O/P: 

 [0 0] 

 [0 0] 

 [1 1] 

 [0 0] 

 [0 0] 

 [1 1] 

 [0 0] 

 [1 1] 

  ……. 

  ….. 

Making the Confusion Matrix 

from sklearn.metrics import confusion_matrix, accuracy_score 

cm = confusion_matrix(y_test, y_pred) 

print(cm) 

accuracy_score(y_test, y_pred) 



 

**From API of scikit-learn look into model metrics Classification metrics  

confusion_matrix; output confusion_matrix(y_test, y_pred)in cm; 

accuracy_score function will give the accuracy. 

 
 
O/P: 
 [[65  3] 
 [ 8 24]] 
0.89 
 
** 65 correct prediction for class 0 mean not to buy SUV; 24 correct prediction for class 1 mean to buy 
SUV; 8 incorrect prediction  for class 0 mean not to buy SUV but practically they bought SUV; 3 incorrect 
prediction for class 1 mean customer to buy SUV but practically they did not buy SUV;  

Visualising the Training set results 

from matplotlib.colors import ListedColormap 

X_set, y_set = sc.inverse_transform(X_train), y_train 

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = 

X_set[:, 0].max() + 10, step = 0.25), 

                     np.arange(start = X_set[:, 1].min() - 1000, stop = 

X_set[:, 1].max() + 1000, step = 0.25)) 

plt.contourf(X1, X2, 

classifier.predict(sc.transform(np.array([X1.ravel(), 

X2.ravel()]).T)).reshape(X1.shape), 

             alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 

plt.xlim(X1.min(), X1.max()) 

plt.ylim(X2.min(), X2.max()) 

for i, j in enumerate(np.unique(y_set)): 

    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = 

ListedColormap(('red', 'green'))(i), label = j) 

plt.title('Logistic Regression (Training set)') 

plt.xlabel('Age') 

plt.ylabel('Estimated Salary') 

plt.legend() 

plt.show() 

 
**Two-dimension plot. X-axis for Age and Y-axis for Estimated Salary; plot will be prediction region ; Here 
prediction boundary is linear region(straight line) because Logistic Regression is Linear; np.meshgrid 
function step=0.25 mean Age: 10,10.25,10.5,… & Estimated Salary 20000, 25000, 30000, ..; Green point 
customer bought SUV and Red point customer did not buy SUV. Red & Green region are prediction. Red 
point on green region mean customer did not buy SUV but predicted buy SUV same-way Green point on 
Red region mean customer bought SUV but predicted bought SUV. So, correct prediction as observation 
points as same colour region and incorrect prediction as observation points are different colour from 
belong region. Any linear classification boundary is straight line which separate two regions. These are 
training set result. All the customer are here in training set therefore observation is trained logistic 
regression.  Logistic regression is able to perform new observation meaning observation of test set mean 
customer of the test set. 
   
O/P: <ipython-input-15-3277c112bab0>:10: UserWarning: *c* argument looks 

like a single numeric RGB or RGBA sequence, which should be avoided as 

value-mapping will have precedence in case its length matches with *x* 



& *y*.  Please use the *color* keyword-argument or provide a 2D array 

with a single row if you intend to specify the same RGB or RGBA value 

for all points. 

  plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = 

ListedColormap(('red', 'green'))(i), label = j) 

 

 

 
 

Visualising the Test set results 

from matplotlib.colors import ListedColormap 

X_set, y_set = sc.inverse_transform(X_test), y_test 

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = 

X_set[:, 0].max() + 10, step = 0.25), 

                     np.arange(start = X_set[:, 1].min() - 1000, stop = 

X_set[:, 1].max() + 1000, step = 0.25)) 

plt.contourf(X1, X2, 

classifier.predict(sc.transform(np.array([X1.ravel(), 

X2.ravel()]).T)).reshape(X1.shape), 

             alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 

plt.xlim(X1.min(), X1.max()) 

plt.ylim(X2.min(), X2.max()) 

for i, j in enumerate(np.unique(y_set)): 

    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = 

ListedColormap(('red', 'green'))(i), label = j) 

plt.title('Logistic Regression (Test set)') 

plt.xlabel('Age') 



plt.ylabel('Estimated Salary') 

plt.legend() 

plt.show() 

 
** Here is the test set result. Logistic regression model done very good job separate two classes. Some 
error also here.  
 
O/P: <ipython-input-16-53d83417cfe6>:10: UserWarning: *c* argument looks 
like a single numeric RGB or RGBA sequence, which should be avoided as 

value-mapping will have precedence in case its length matches with *x* 

& *y*.  Please use the *color* keyword-argument or provide a 2D array 

with a single row if you intend to specify the same RGB or RGBA value 

for all points. 

  plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = 

ListedColormap(('red', 'green'))(i), label = j) 

 

 

 
 

 

  



K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a simple yet powerful machine learning algorithm 
used for both classification and regression tasks.  
It is a supervised learning algorithm that predicts the label or value of a new data 
point by considering its K closest neighbors in the training dataset. 
 
The algorithm works by finding the K nearest neighbors to a given data point based 
on a distance metric, such as Euclidean distance. The class or value of the data 
point is then determined by the majority vote or average of the K neighbors. 
KNN is a versatile and widely used machine learning algorithm that is primarily used 
for its simplicity and ease of implementation. It does not require any assumptions 
about the underlying data distribution. It can also handle both numerical and 
categorical data, making it a flexible choice for various types of datasets in 
classification and regression tasks. 
 

Here two category datasets Red as category1 and Green as category2. New data 

point, should it fall on category1 or category2? K-NN algorithm identify the red or 

green category.  

 

 

 

 

 

 

How did it do that ? 
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K-Nearest Neighbors (K-NN) Python Code: 
 

Dataset: Social_Network_Ads 

 

 

 

**Importing the same Dataset for K-NN. All the codes for Logistic Regression & K-NN 

are the same except Training the K-NN model on the Training set. 

 

 

 

Importing the libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 



Importing the dataset 

dataset = pd.read_csv('Social_Network_Ads.csv') 

X = dataset.iloc[:, :-1].values 

y = dataset.iloc[:, -1].values 

 

Splitting the dataset into the Training set and Test set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 

0.25, random_state = 0) 

 

print(X_train) 

 

O/P:  

[[    44  39000] 

 [    32 120000] 

 [    38  50000] 

 [    32 135000] 

 ---------------- 

 [    29  43000] 

 [    36  52000] 

 [    27  54000] 

 [    26 118000]] 

 

print(y_train) 

 

O/P: [0 1 0 1 1 1 0 --------- 0 0 0 0] 

 

print(X_test) 

 

O/P:  

[[    30  87000] 

 [    38  50000] 

 [    35  75000] 

 [    30  79000] 

 [    35  50000] 

 --------------- 

 [    23  63000] 

 [    48  33000] 

 [    48  90000] 

 [    42 104000]] 



 

print(y_test) 

 

O/P: [0 0 0 0 0 0 0 ------------ 1 0 1 1 1] 

 

Feature Scaling 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

 

print(X_train) 

 

O/P: 

[[ 0.58164944 -0.88670699] 

 [-0.60673761  1.46173768] 

 [-0.01254409 -0.5677824 ] 

 [-0.60673761  1.89663484] 

 [ 1.37390747 -1.40858358] 

 ------------------------- 

 [-0.90383437 -0.77073441] 

 [-0.21060859 -0.50979612] 

 [-1.10189888 -0.45180983] 

 [-1.20093113  1.40375139]] 

 

print(X_test) 

 

O/P:  

[[-0.80480212  0.50496393] 

 [-0.01254409 -0.5677824 ] 

 [-0.30964085  0.1570462 ] 

 [-0.80480212  0.27301877] 

 [-0.30964085 -0.5677824 ] 

 [-1.10189888 -1.43757673] 

 -------------------------- 

 [-1.49802789 -0.19087153] 

 [ 0.97777845 -1.06066585] 

 [ 0.97777845  0.59194336] 

 [ 0.38358493  0.99784738]] 

 



Training the K-NN model on the Training set 

from sklearn.neighbors import KNeighborsClassifier 

classifier = KNeighborsClassifier(n_neighbors = 5, metric = 

'minkowski', p = 2) 

classifier.fit(X_train, y_train) 

 

** Go to Scikit-Learn  API  sklearn.neighbors: Nearest Neighbors (Model) 

neighbors.KNeighborsClassifier where KNeighborsClassifier  This is the class. 

Instance of the class has the parameters n_neighborsint, default=5 (Number of 

neighbors to use by default for kneighbors queries) and metric=’minkowski’ mean distance 

between observation point and neighbour which measure classic Euclidean Distance. 

P=2  Power parameter for the Minkowski metric. When p = 1, this is equivalent to using 

manhattan_distance (l1), and euclidean_distance (l2) for p = 2.  

Classifier.fit()  fit method takes X_train and y_train .  

Predicting a new result 

print(classifier.predict(sc.transform([[30,87000]]))) 

 

O/P: [0] 

Predicting the Test set results 

y_pred = classifier.predict(X_test) 

print(np.concatenate((y_pred.reshape(len(y_pred),1), 

y_test.reshape(len(y_test),1)),1)) 

 

O/P: 

[[0 0] 

 [0 0] 

 [0 0] 

 [0 0] 

 [0 0] 

 [0 0] 

 [0 0] 

 [1 1] 

 ----- 

 [0 1] 

 [0 0] 

 [1 1] 

 [1 1] 

 [1 1]] 

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier.kneighbors


Making the Confusion Matrix 

from sklearn.metrics import confusion_matrix, accuracy_score 

cm = confusion_matrix(y_test, y_pred) 

print(cm) 

accuracy_score(y_test, y_pred) 

 

O/P: 

[[64  4] 
 [ 3 29]] 
0.93 

 

Visualising the Training set results 

from matplotlib.colors import ListedColormap 

X_set, y_set = sc.inverse_transform(X_train), y_train 

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = 

X_set[:, 0].max() + 10, step = 1), 

                     np.arange(start = X_set[:, 1].min() - 1000, stop = 

X_set[:, 1].max() + 1000, step = 1)) 

plt.contourf(X1, X2, 

classifier.predict(sc.transform(np.array([X1.ravel(), 

X2.ravel()]).T)).reshape(X1.shape), 

             alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 

plt.xlim(X1.min(), X1.max()) 

plt.ylim(X2.min(), X2.max()) 

for i, j in enumerate(np.unique(y_set)): 

    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = 

ListedColormap(('red', 'green'))(i), label = j) 

plt.title('K-NN (Training set)') 

plt.xlabel('Age') 

plt.ylabel('Estimated Salary') 

plt.legend() 

plt.show() 

  

** K-NN model is very compute intensive so lot of computation that’s why during 

execution time taking more.  Here prediction boundary not a straight line (non linear) 

some kind of curve that’s why prediction error is less. We want to avoid overfeeding 

for Machine Learning. Here we get excellent result. So, much better than logistic 

regression.  

O/P: 

<ipython-input-15-9061e2cf8fe3>:10: UserWarning: *c* argument looks 

like a single numeric RGB or RGBA sequence, which should be avoided as 

value-mapping will have precedence in case its length matches with *x* 

& *y*.  Please use the *color* keyword-argument or provide a 2D array 



with a single row if you intend to specify the same RGB or RGBA value 

for all points. 

  plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = 

ListedColormap(('red', 'green'))(i), label = j) 

 

 

 

 

Visualising the Test set results 

 

from matplotlib.colors import ListedColormap 

X_set, y_set = sc.inverse_transform(X_test), y_test 

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = 

X_set[:, 0].max() + 10, step = 1), 

                     np.arange(start = X_set[:, 1].min() - 1000, stop = 

X_set[:, 1].max() + 1000, step = 1)) 

plt.contourf(X1, X2, 

classifier.predict(sc.transform(np.array([X1.ravel(), 

X2.ravel()]).T)).reshape(X1.shape), 

             alpha = 0.75, cmap = ListedColormap(('red', 'green'))) 

plt.xlim(X1.min(), X1.max()) 

plt.ylim(X2.min(), X2.max()) 

for i, j in enumerate(np.unique(y_set)): 

    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = 

ListedColormap(('red', 'green'))(i), label = j) 



plt.title('K-NN (Test set)') 

plt.xlabel('Age') 

plt.ylabel('Estimated Salary') 

plt.legend() 

plt.show() 

 

O/P: 

<ipython-input-16-4086b5de55b9>:10: UserWarning: *c* argument looks 

like a single numeric RGB or RGBA sequence, which should be avoided as 

value-mapping will have precedence in case its length matches with *x* 

& *y*.  Please use the *color* keyword-argument or provide a 2D array 

with a single row if you intend to specify the same RGB or RGBA value 

for all points. 

  plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = 

ListedColormap(('red', 'green'))(i), label = j) 
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