
Classification
In machine learning, classification is a type of supervised learning technique

where an algorithm is trained on a labeled dataset to predict the class or category of
new, unseen data. The main objective of classification is to build a model that can
accurately assign a label or category to a new observation based on its features.
Classification algorithms can be broadly classified into binary and multi-
class classifiers. Binary classifiers are used when the classification problem has only
two possible outcomes, such as “Yes” or “No”, “Male” or “Female”, “Spam” or “Not
Spam”, “Cat” or “Dog”, etc. Multi-class classifiers are used when a classification
problem has more than two outcomes, such as classifications of types of crops,
types of music, etc.

Unlike regression where you predict a continuous number, you use classification to predict a

category. There is a wide variety of classification applications from medicine to marketing.

Classification models include linear models like Logistic Regression, SVM, and nonlinear

ones like K-NN, Kernel SVM and Random Forests.

In this part, you will understand and learn how to implement the following Machine Learning

Classification models:

1. Logistic Regression

2. K-Nearest Neighbors (K-NN)

3. Support Vector Machine (SVM)

4. Kernel SVM

5. Naive Bayes

6. Decision Tree Classification

7. Random Forest Classification

https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.geeksforgeeks.org/getting-started-with-classification/
https://www.geeksforgeeks.org/getting-started-with-classification/
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning
https://www.javatpoint.com/classification-algorithm-in-machine-learning

Logistic Regression in Machine Learning

Logistic regression is a supervised machine learning algorithm mainly used for classification tasks
where the goal is to predict the probability that an instance belongs to a given class or not. It is a kind

of statistical algorithm, which analyzes the relationship between a set of independent variables and the

dependent binary variables. Logistic regression is a powerful tool for decision-making.

Logistic regression is a supervised machine learning algorithm mainly used for

binary classification where we use a logistic function, also known as a sigmoid

function that takes input as independent variables and produces a probability value

between 0 and 1.

Logistic Regression for Single Independent variable:

Base on the Logistic Regression 35 years age would not purchase insurance but 45

years age would purchase insurance.

Multiple Independents Variable for Logistic Regression:

https://www.geeksforgeeks.org/supervised-unsupervised-learning/
https://www.geeksforgeeks.org/getting-started-with-classification/

Logistic regression - Maximum Likelihood Estimation

In logistic regression, the maximum likelihood estimation (MLE) is used to estimate
the parameters of the model. The goal of MLE is to find the set of parameters that
maximize the likelihood function, which is the probability of observing the data given
the model parameters. The likelihood function is a product of probabilities of observing
each data point, given the model parameters. The parameters are estimated by
maximizing the log-likelihood function, which is the natural logarithm of the likelihood
function. The maximum likelihood estimates of the parameters are the values that
maximize the log-likelihood function.

https://www.statlect.com/fundamentals-of-statistics/logistic-model-maximum-likelihood
https://www.statlect.com/fundamentals-of-statistics/logistic-model-maximum-likelihood

Dataset: Social_Network_Ads

On data classification model trained and need to predict which customer buy brand new

model SUV. Our model will be trained on different Age, EstimatedSalary (both independent

variable) and also purchase (dependent variable). Purchase ‘0’ mean customer didn’t buy

any previous SUV and ‘1’ mean bought previous SUV. Future prediction purchase ‘1’ high

chance to purchase New model SUV. Predicted model will target the customer and Advertise

team use the result of predicted model and optimize the target the future customer that’s

why name of the dataset is Social_Network_Ads.

Python Code:

**Logistic Regression is linear models. You will get all code related to logistic regression

from scikit-learn. Go to scikit-learn then API, API reference classification Linear

Models all the linear models you will get logistic regression and click on it you will get

complete class of Logistic Regression.

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Importing the dataset

dataset = pd.read_csv('Social_Network_Ads.csv')

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, -1].values

** Importing libraries and dataset are the same as data preprocessing.

Splitting the dataset into the Training set and Test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =

0.25, random_state = 0)

print(X_train)

** Dataset has 400 customer that’s why test_size=0.25 mean 300 for training and 100 for

test set

O/P: [39 106000]

 [37 57000]

 [26 72000]

 [35 23000]

 [54 108000]

 [30 17000]

 [39 134000]

 [29 43000]

 [33 43000]

………………………………….

………………………………….

print(y_train)

 O/P:

[0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 0

0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0

1 0 1 …….

……
0 0 0 0]

print(X_test)

O/P:
 [27 84000]

 [35 20000]

 [43 112000]

 [27 58000]

 [37 80000]

 [52 90000]

 [26 30000]

 ……………………………..

 ………………………………

print(y_test)

O/P:

[0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0

0 0……… 1 1]

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

** All the features (Age and EstimatedSalary) are same scale.

print(X_train)

O/P:

 [0.08648817 1.05583366]

 [-0.11157634 -0.3648304]

 [-1.20093113 0.07006676]

 [-0.30964085 -1.3505973]

 [1.57197197 1.11381995]

 [-0.80480212 -1.52455616]

 [0.08648817 1.8676417]

 …. …. … … ….

print(X_test)

O/P:

 [-1.10189888 0.41798449]

 [-0.30964085 -1.43757673]

 [0.48261718 1.22979253]

 [-1.10189888 -0.33583725]

 [-0.11157634 0.30201192]

 [1.37390747 0.59194336]

 [-1.20093113 -1.14764529]

 ……………………………………………………

 ……………………………………………..

Training the Logistic Regression model on the Training set

from sklearn.linear_model import LogisticRegression

classifier = LogisticRegression(random_state = 0)

classifier.fit(X_train, y_train)

** sklearn.linear_model this is the model; LogisticRegression is the

class; Here no parameter is required because simple logistic regression

so random_state=0; classifier.fit method trained the logistic

regression as X_train and y_train

Predicting a new result

print(classifier.predict(sc.transform([[30,87000]])))

** predict method for single observation. Purchase decision 1st customer whose is 30 and

estimate salary 87000. Whether this customer bought SUV Yes or No. Our prediction Y test

or result is 0 mean customer SUV not bought. So, prediction correct.

O/P: [0]

Predicting the Test set results

y_pred = classifier.predict(X_test)

print(np.concatenate((y_pred.reshape(len(y_pred),1),

y_test.reshape(len(y_test),1)),1))

O/P:

 [0 0]

 [0 0]

 [1 1]

 [0 0]

 [0 0]

 [1 1]

 [0 0]

 [1 1]

 …….

 …..

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix, accuracy_score

cm = confusion_matrix(y_test, y_pred)

print(cm)

accuracy_score(y_test, y_pred)

**From API of scikit-learn look into model metrics Classification metrics

confusion_matrix; output confusion_matrix(y_test, y_pred)in cm;

accuracy_score function will give the accuracy.

O/P:
 [[65 3]
 [8 24]]
0.89

** 65 correct prediction for class 0 mean not to buy SUV; 24 correct prediction for class 1 mean to buy
SUV; 8 incorrect prediction for class 0 mean not to buy SUV but practically they bought SUV; 3 incorrect
prediction for class 1 mean customer to buy SUV but practically they did not buy SUV;

Visualising the Training set results

from matplotlib.colors import ListedColormap

X_set, y_set = sc.inverse_transform(X_train), y_train

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop =

X_set[:, 0].max() + 10, step = 0.25),

 np.arange(start = X_set[:, 1].min() - 1000, stop =

X_set[:, 1].max() + 1000, step = 0.25))

plt.contourf(X1, X2,

classifier.predict(sc.transform(np.array([X1.ravel(),

X2.ravel()]).T)).reshape(X1.shape),

 alpha = 0.75, cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(), X1.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c =

ListedColormap(('red', 'green'))(i), label = j)

plt.title('Logistic Regression (Training set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()

**Two-dimension plot. X-axis for Age and Y-axis for Estimated Salary; plot will be prediction region ; Here
prediction boundary is linear region(straight line) because Logistic Regression is Linear; np.meshgrid
function step=0.25 mean Age: 10,10.25,10.5,… & Estimated Salary 20000, 25000, 30000, ..; Green point
customer bought SUV and Red point customer did not buy SUV. Red & Green region are prediction. Red
point on green region mean customer did not buy SUV but predicted buy SUV same-way Green point on
Red region mean customer bought SUV but predicted bought SUV. So, correct prediction as observation
points as same colour region and incorrect prediction as observation points are different colour from
belong region. Any linear classification boundary is straight line which separate two regions. These are
training set result. All the customer are here in training set therefore observation is trained logistic
regression. Logistic regression is able to perform new observation meaning observation of test set mean
customer of the test set.

O/P: <ipython-input-15-3277c112bab0>:10: UserWarning: *c* argument looks

like a single numeric RGB or RGBA sequence, which should be avoided as

value-mapping will have precedence in case its length matches with *x*

& *y*. Please use the *color* keyword-argument or provide a 2D array

with a single row if you intend to specify the same RGB or RGBA value

for all points.

 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c =

ListedColormap(('red', 'green'))(i), label = j)

Visualising the Test set results

from matplotlib.colors import ListedColormap

X_set, y_set = sc.inverse_transform(X_test), y_test

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop =

X_set[:, 0].max() + 10, step = 0.25),

 np.arange(start = X_set[:, 1].min() - 1000, stop =

X_set[:, 1].max() + 1000, step = 0.25))

plt.contourf(X1, X2,

classifier.predict(sc.transform(np.array([X1.ravel(),

X2.ravel()]).T)).reshape(X1.shape),

 alpha = 0.75, cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(), X1.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c =

ListedColormap(('red', 'green'))(i), label = j)

plt.title('Logistic Regression (Test set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()

** Here is the test set result. Logistic regression model done very good job separate two classes. Some
error also here.

O/P: <ipython-input-16-53d83417cfe6>:10: UserWarning: *c* argument looks
like a single numeric RGB or RGBA sequence, which should be avoided as

value-mapping will have precedence in case its length matches with *x*

& *y*. Please use the *color* keyword-argument or provide a 2D array

with a single row if you intend to specify the same RGB or RGBA value

for all points.

 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c =

ListedColormap(('red', 'green'))(i), label = j)

K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a simple yet powerful machine learning algorithm
used for both classification and regression tasks.
It is a supervised learning algorithm that predicts the label or value of a new data
point by considering its K closest neighbors in the training dataset.

The algorithm works by finding the K nearest neighbors to a given data point based
on a distance metric, such as Euclidean distance. The class or value of the data
point is then determined by the majority vote or average of the K neighbors.
KNN is a versatile and widely used machine learning algorithm that is primarily used
for its simplicity and ease of implementation. It does not require any assumptions
about the underlying data distribution. It can also handle both numerical and
categorical data, making it a flexible choice for various types of datasets in
classification and regression tasks.

Here two category datasets Red as category1 and Green as category2. New data

point, should it fall on category1 or category2? K-NN algorithm identify the red or

green category.

How did it do that ?

https://www.geeksforgeeks.org/k-nearest-neighbours/
https://www.geeksforgeeks.org/k-nearest-neighbours/
https://www.geeksforgeeks.org/k-nearest-neighbours/
https://www.geeksforgeeks.org/k-nearest-neighbours/
https://www.geeksforgeeks.org/k-nearest-neighbours/
https://www.geeksforgeeks.org/k-nearest-neighbours/
https://www.geeksforgeeks.org/k-nearest-neighbours/

K-Nearest Neighbors (K-NN) Python Code:

Dataset: Social_Network_Ads

**Importing the same Dataset for K-NN. All the codes for Logistic Regression & K-NN

are the same except Training the K-NN model on the Training set.

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Importing the dataset

dataset = pd.read_csv('Social_Network_Ads.csv')

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, -1].values

Splitting the dataset into the Training set and Test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =

0.25, random_state = 0)

print(X_train)

O/P:

[[44 39000]

 [32 120000]

 [38 50000]

 [32 135000]

 [29 43000]

 [36 52000]

 [27 54000]

 [26 118000]]

print(y_train)

O/P: [0 1 0 1 1 1 0 --------- 0 0 0 0]

print(X_test)

O/P:

[[30 87000]

 [38 50000]

 [35 75000]

 [30 79000]

 [35 50000]

 [23 63000]

 [48 33000]

 [48 90000]

 [42 104000]]

print(y_test)

O/P: [0 0 0 0 0 0 0 ------------ 1 0 1 1 1]

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

print(X_train)

O/P:

[[0.58164944 -0.88670699]

 [-0.60673761 1.46173768]

 [-0.01254409 -0.5677824]

 [-0.60673761 1.89663484]

 [1.37390747 -1.40858358]

 [-0.90383437 -0.77073441]

 [-0.21060859 -0.50979612]

 [-1.10189888 -0.45180983]

 [-1.20093113 1.40375139]]

print(X_test)

O/P:

[[-0.80480212 0.50496393]

 [-0.01254409 -0.5677824]

 [-0.30964085 0.1570462]

 [-0.80480212 0.27301877]

 [-0.30964085 -0.5677824]

 [-1.10189888 -1.43757673]

 [-1.49802789 -0.19087153]

 [0.97777845 -1.06066585]

 [0.97777845 0.59194336]

 [0.38358493 0.99784738]]

Training the K-NN model on the Training set

from sklearn.neighbors import KNeighborsClassifier

classifier = KNeighborsClassifier(n_neighbors = 5, metric =

'minkowski', p = 2)

classifier.fit(X_train, y_train)

** Go to Scikit-Learn API sklearn.neighbors: Nearest Neighbors (Model)

neighbors.KNeighborsClassifier where KNeighborsClassifier This is the class.

Instance of the class has the parameters n_neighborsint, default=5 (Number of

neighbors to use by default for kneighbors queries) and metric=’minkowski’ mean distance

between observation point and neighbour which measure classic Euclidean Distance.

P=2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using

manhattan_distance (l1), and euclidean_distance (l2) for p = 2.

Classifier.fit() fit method takes X_train and y_train .

Predicting a new result

print(classifier.predict(sc.transform([[30,87000]])))

O/P: [0]

Predicting the Test set results

y_pred = classifier.predict(X_test)

print(np.concatenate((y_pred.reshape(len(y_pred),1),

y_test.reshape(len(y_test),1)),1))

O/P:

[[0 0]

 [0 0]

 [0 0]

 [0 0]

 [0 0]

 [0 0]

 [0 0]

 [1 1]

 [0 1]

 [0 0]

 [1 1]

 [1 1]

 [1 1]]

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier.kneighbors

Making the Confusion Matrix

from sklearn.metrics import confusion_matrix, accuracy_score

cm = confusion_matrix(y_test, y_pred)

print(cm)

accuracy_score(y_test, y_pred)

O/P:

[[64 4]
 [3 29]]
0.93

Visualising the Training set results

from matplotlib.colors import ListedColormap

X_set, y_set = sc.inverse_transform(X_train), y_train

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop =

X_set[:, 0].max() + 10, step = 1),

 np.arange(start = X_set[:, 1].min() - 1000, stop =

X_set[:, 1].max() + 1000, step = 1))

plt.contourf(X1, X2,

classifier.predict(sc.transform(np.array([X1.ravel(),

X2.ravel()]).T)).reshape(X1.shape),

 alpha = 0.75, cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(), X1.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c =

ListedColormap(('red', 'green'))(i), label = j)

plt.title('K-NN (Training set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()

** K-NN model is very compute intensive so lot of computation that’s why during

execution time taking more. Here prediction boundary not a straight line (non linear)

some kind of curve that’s why prediction error is less. We want to avoid overfeeding

for Machine Learning. Here we get excellent result. So, much better than logistic

regression.

O/P:

<ipython-input-15-9061e2cf8fe3>:10: UserWarning: *c* argument looks

like a single numeric RGB or RGBA sequence, which should be avoided as

value-mapping will have precedence in case its length matches with *x*

& *y*. Please use the *color* keyword-argument or provide a 2D array

with a single row if you intend to specify the same RGB or RGBA value

for all points.

 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c =

ListedColormap(('red', 'green'))(i), label = j)

Visualising the Test set results

from matplotlib.colors import ListedColormap

X_set, y_set = sc.inverse_transform(X_test), y_test

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop =

X_set[:, 0].max() + 10, step = 1),

 np.arange(start = X_set[:, 1].min() - 1000, stop =

X_set[:, 1].max() + 1000, step = 1))

plt.contourf(X1, X2,

classifier.predict(sc.transform(np.array([X1.ravel(),

X2.ravel()]).T)).reshape(X1.shape),

 alpha = 0.75, cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(), X1.max())

plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):

 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c =

ListedColormap(('red', 'green'))(i), label = j)

plt.title('K-NN (Test set)')

plt.xlabel('Age')

plt.ylabel('Estimated Salary')

plt.legend()

plt.show()

O/P:

<ipython-input-16-4086b5de55b9>:10: UserWarning: *c* argument looks

like a single numeric RGB or RGBA sequence, which should be avoided as

value-mapping will have precedence in case its length matches with *x*

& *y*. Please use the *color* keyword-argument or provide a 2D array

with a single row if you intend to specify the same RGB or RGBA value

for all points.

 plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c =

ListedColormap(('red', 'green'))(i), label = j)

	Logistic Regression in Machine Learning
	Logistic regression - Maximum Likelihood Estimation
	Importing the libraries
	Importing the dataset
	Splitting the dataset into the Training set and Test set
	Feature Scaling
	Training the Logistic Regression model on the Training set
	Predicting a new result
	Predicting the Test set results
	Making the Confusion Matrix
	Visualising the Training set results
	Visualising the Test set results

	K-Nearest Neighbors (K-NN) Python Code:
	**Importing the same Dataset for K-NN. All the codes for Logistic Regression & K-NN are the same except Training the K-NN model on the Training set.
	Importing the libraries
	Importing the dataset
	Splitting the dataset into the Training set and Test set
	Feature Scaling
	Training the K-NN model on the Training set
	Predicting a new result
	Predicting the Test set results
	Making the Confusion Matrix
	Visualising the Training set results
	Visualising the Test set results

