
Regression

A regression is a statistical technique that relates a dependent variable to one or more
independent (explanatory) variables. A regression model is able to show whether changes
observed in the dependent variable are associated with changes in one or more of the
explanatory variables.

Regression line for 50 random points in a Gaussian distribution around the line y=1.5x+2 (not
shown)

Regression models (both linear and non-linear) are used for predicting a real value, like salary
for example. If your independent variable is time, then you are forecasting future values,
otherwise your model is predicting present but unknown values. Regression technique vary
from Linear Regression to SVR and Random Forests Regression.

https://en.wikipedia.org/wiki/Gaussian_distribution
https://en.wikipedia.org/wiki/File:Normdist_regression.png

In this part, you will understand and learn how to implement the following Machine Learning
Regression models:

1. Simple Linear Regression
2. Multiple Linear Regression
3. Polynomial Regression
4. Support Vector for Regression (SVR)
5. Decision Tree Regression

6. Random Forest Regression

Simple Linear Regression

Simple linear regression is used to estimate the relationship between two quantitative

variables. You can use simple linear regression when you want to know:

1. How strong the relationship is between two variables (e.g., the relationship between
rainfall and soil erosion).

2. The value of the dependent variable at a certain value of the independent variable (e.g.,
the amount of soil erosion at a certain level of rainfall).

Dataset: Salary_Data.csv (csv file link)

https://www.scribbr.com/methodology/types-of-variables/#quantitative-vs-categorical
https://www.scribbr.com/methodology/types-of-variables/#quantitative-vs-categorical
https://www.scribbr.com/methodology/independent-and-dependent-variables/#independent

Simple linear regression:

Importing the libraries

importnumpyas np

importmatplotlib.pyplotasplt

import pandas as pd

Importing the dataset

dataset = pd.read_csv('Salary_Data.csv')

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, -1].values

Splitting the dataset into the Training set and Test set

fromsklearn.model_selectionimporttrain_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0)

Training the Simple Linear Regression model on the Training set

fromsklearn.linear_modelimportLinearRegression

regressor = LinearRegression()

regressor.fit(X_train, y_train)

Predicting the Test set results

y_pred = regressor.predict(X_test)

Visualising the Training set results

plt.scatter(X_train, y_train, color = 'red')

plt.plot(X_train, regressor.predict(X_train), color = 'blue')

plt.title('Salary vs Experience (Training set)')

plt.xlabel('Years of Experience')

plt.ylabel('Salary')

plt.show()

Visualising the Test set results

plt.scatter(X_test, y_test, color = 'red')

plt.plot(X_train, regressor.predict(X_train), color = 'blue')

plt.title('Salary vs Experience (Test set)')

plt.xlabel('Years of Experience')

plt.ylabel('Salary')

plt.show()

Multiple Linear Regression

Multiple linear regression (MLR), also known simply as multiple regression, is a
statistical technique that uses several explanatory variables to predict the outcome of a
response variable. The goal of multiple linear regression is to model the linear
relationship between the explanatory (independent) variables and response
(dependent) variables. In essence, multiple regression is the extension of ordinary
least-squares (OLS) regression because it involves more than one explanatory

variable.

What is a Dummy Variable Trap?

In linear regression models, to create a model that can infer relationship between features

(having categorical data) and the outcome, we use the dummy variable technique.

Multicollinearity is a phenomenon in which two or more variables are highly correlated. In

simple words, it means value of one variable can be predicted from the values of other

variable(s).

https://www.investopedia.com/terms/l/linearrelationship.asp
https://www.investopedia.com/terms/l/linearrelationship.asp
https://www.investopedia.com/terms/r/regression.asp

y= b0 + b1*x1 + b2*x2 + b3*x3 + b4*D1 + b5*D2

P-Value:

In statistics, the p-value is the probability of obtaining results at least as extreme as
the observed results of a statistical hypothesis test, assuming that the null
hypothesis is correct. The p-value serves as an alternative to rejection points to
provide the smallest level of significance at which the null hypothesis would be
rejected. A smaller p-value means that there is stronger evidence in favor of the
alternative hypothesis.

https://www.investopedia.com/terms/h/hypothesistesting.asp
https://www.investopedia.com/terms/n/null_hypothesis.asp
https://www.investopedia.com/terms/n/null_hypothesis.asp

Building A Model:

5 methods of building models:

 All-in

 Backward Elimination

 Forward Selection

 Bidirectional Elimination

 Score Composition

Multiple Linear Regression

Importing the libraries

importnumpyas np

importmatplotlib.pyplotasplt

import pandas as pd

Importing the dataset

dataset = pd.read_csv('50_Startups.csv')

X = dataset.iloc[:, :-1].values

y = dataset.iloc[:, -1].values

print(X)

[[165349.2 136897.8 471784.1 'New York']

 [162597.7 151377.59 443898.53 'California']

 [153441.51 101145.55 407934.54 'Florida']

 [144372.41 118671.85 383199.62 'New York']

 [142107.34 91391.77 366168.42 'Florida']

 [131876.9 99814.71 362861.36 'New York']

…….

Encoding categorical data

fromsklearn.composeimportColumnTransformer

fromsklearn.preprocessingimportOneHotEncoder

ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [3])],

remainder='passthrough')

X = np.array(ct.fit_transform(X))

print(X)

[[0.0 0.0 1.0 165349.2 136897.8 471784.1]

 [1.0 0.0 0.0 162597.7 151377.59 443898.53]

 [0.0 1.0 0.0 153441.51 101145.55 407934.54]

 [0.0 0.0 1.0 144372.41 118671.85 383199.62]

 [0.0 1.0 0.0 142107.34 91391.77 366168.42]

 [0.0 0.0 1.0 131876.9 99814.71 362861.36]

……

Splitting the dataset into the Training set and Test set

fromsklearn.model_selectionimporttrain_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,

random_state = 0)

Training the Multiple Linear Regression model on the Training set

fromsklearn.linear_modelimportLinearRegression

regressor = LinearRegression()

regressor.fit(X_train, y_train)

Predicting the Test set results

y_pred = regressor.predict(X_test)

np.set_printoptions(precision=2)

print(np.concatenate((y_pred.reshape(len(y_pred),1),

y_test.reshape(len(y_test),1)),1))

[[103015.2 103282.38]

 [132582.28 144259.4]

 [132447.74 146121.95]

 [71976.1 77798.83]

 [178537.48 191050.39]

 [116161.24 105008.31]

 [67851.69 81229.06]

 [98791.73 97483.56]

 [113969.44 110352.25]

 [167921.07 166187.94]]

** we didn’t use feature scaling because coefficient multiply each independent variable

or each feature. So, that doesn’t matter because some feature high value but coefficient

compensate and make them same scale.

So not required Feature scaling.

***Do we have avoid to do something dummy variable?

No. Automatically trained Multiple Linear Regression model and Dummy variable also

trap. Advance implementation inbuild machine learning model just few code that will

trap the dummy variable. Not required to do anything.

****do we have to work in feature for best one with technique introduce like backward

elimination technique to get highest p-value or best feature significant?

Answer is also No. because same reason as Dummy variable trap. Multiple Linear

Regression class in build model which automatically identify high p-value or highly

significant feature.

So, Scikit learn (sklearn) everything will take care. So, need not to worry.

R Studio:

Multiple Linear Regression

Importing the dataset

dataset = read.csv('50_Startups.csv')

Encoding categorical data

dataset$State = factor(dataset$State,

 levels = c('New York', 'California', 'Florida'),

 labels = c(1, 2, 3))

Splitting the dataset into the Training set and Test set

#install.packages('caTools')

library(caTools)

set.seed(123)

split = sample.split(dataset$Profit, SplitRatio = 0.8)

training_set = subset(dataset, split == TRUE)

test_set = subset(dataset, split == FALSE)

Feature Scaling

training_set = scale(training_set)

test_set = scale(test_set)

Fitting Multiple Linear Regression to the Training set

regressor = lm(formula = Profit ~ .,

 data = training_set)

summary(regressor)

Predicting the Test set results

y_pred = predict(regressor, newdata = test_set)

summary(regressor)

Call:
lm(formula = Profit ~ ., data = training_set)

Residuals:
 Min 1Q Median 3Q Max
-33128 -4865 5 6098 18065

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.965e+04 7.637e+03 6.501 1.94e-07 ***
R.D.Spend 7.986e-01 5.604e-02 14.251 6.70e-16 ***
Administration -2.942e-02 5.828e-02 -0.505 0.617
Marketing.Spend 3.268e-02 2.127e-02 1.537 0.134
State2 1.213e+02 3.751e+03 0.032 0.974
State3 2.376e+02 4.127e+03 0.058 0.954

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9908 on 34 degrees of freedom
Multiple R-squared: 0.9499, Adjusted R-squared: 0.9425
F-statistic: 129 on 5 and 34 DF, p-value: < 2.2e-16

*** This information very interesting information that will build robust model, not only P-

value that will help to select the optimal team of independent variable. R-squared and

adjusted R-squared which will help to build more robust model. Last column don’t have

name only star. P-value is less than 5% significant level then the more independent

variable significant on dependent variable. P-value is more than 5% significant level

then independent variable less significant on dependent variable.

R-squared

Adjusted R-squared:

Polynomial Regression

Polynomial regression is a form of regression analysis in which the relationship between the
independent variable x and the dependent variable y is modeled as an n-th degree polynomial
in x . It is used to model non-linear relationships between the variables . Polynomial regression
fits a nonlinear relationship between the value of x and the corresponding conditional mean
of y, denoted E(y|x) .
In polynomial regression, we describe the relationship between the independent variable x and
the dependent variable y using an n-th degree polynomial in x. The polynomial regression
equation is given by:

y = b0 + b1*x + b2*x^2 + b3*x^3 + ... + bn*x^n

where b0, b1, b2, ..., bn are coefficients and n is the degree of the polynomial

https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression

Position_Salaries_Court:

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Importing the dataset

dataset = pd.read_csv('Position_Salaries_Court.csv')

X = dataset.iloc[:, 1:-1].values

y = dataset.iloc[:, -1].values

Training the Linear Regression model on the whole dataset

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()

lin_reg.fit(X, y)

Training the Polynomial Regression model on the whole dataset

from sklearn.preprocessing import PolynomialFeatures

poly_reg = PolynomialFeatures(degree = 4)

X_poly = poly_reg.fit_transform(X)

lin_reg_2 = LinearRegression()

lin_reg_2.fit(X_poly, y)

Visualising the Linear Regression results

plt.scatter(X, y, color = 'red')

plt.plot(X, lin_reg.predict(X), color = 'blue')

plt.title('Truth or Bluff (Linear Regression)')

plt.xlabel('Position Level')

plt.ylabel('Salary')

plt.show()

Visualising the Polynomial Regression results

plt.scatter(X, y, color = 'red')

plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'blue')

plt.title('Truth or Bluff (Polynomial Regression)')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

Visualising the Polynomial Regression results (for higher resolution

and smoother curve)

X_grid = np.arange(min(X), max(X), 0.1)

X_grid = X_grid.reshape((len(X_grid), 1))

plt.scatter(X, y, color = 'red')

plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color =

'blue')

plt.title('Truth or Bluff (Polynomial Regression)')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

Predicting a new result with Linear Regression

lin_reg.predict([[10.5]])

O/P: array([154802.46212121])

Predicting a new result with Polynomial Regression

lin_reg_2.predict(poly_reg.fit_transform([[10.5]]))

O/P: array([110617.935597])

Support Vector Regression (SVR)

Support Vector Regression (SVR) is a type of machine learning algorithm used for regression

analysis. It is an extension of Support Vector Machines (SVMs) and works by finding a

hyperplane that best fits the data points in a high-dimensional space. The goal of SVR is to

find a function that approximates the relationship between the input variables and a continuous

target variable, while minimizing the prediction error.

Support Vector Regression (SVR) using Linear and Non-Linear Kernels in

Scikit Learn

Support vector regression (SVR) is a type of support vector machine (SVM) that is used for
regression tasks. It tries to find a function that best predicts the continuous output value for a
given input value.

SVR can use both linear and non-linear kernels. A linear kernel is a simple dot product
between two input vectors, while a non-linear kernel is a more complex function that can
capture more intricate patterns in the data. The choice of kernel depends on the data’s
characteristics and the task’s complexity.

In scikit-learn package for Python, you can use the ‘SVR’ class to perform SVR with a linear

or non-linear ‘kernel’. To specify the kernel, you can set the kernel parameter

to ‘linear’ or ‘RBF’ (radial basis function).

Concepts related to the Support vector regression (SVR):

There are several concepts related to support vector regression (SVR) that you may want to
understand in order to use it effectively. Here are a few of the most important ones:

 Support vector machines (SVMs): SVR is a type of support vector
machine (SVM), a supervised learning algorithm that can be used for classification
or regression tasks. SVMs try to find the hyperplane in a high-dimensional space
that maximally separates different classes or output values.

 Kernels: SVR can use different types of kernels, which are functions that
determine the similarity between input vectors. A linear kernel is a simple dot
product between two input vectors, while a non-linear kernel is a more complex
function that can capture more intricate patterns in the data. The choice of kernel
depends on the data’s characteristics and the task’s complexity.

 Hyperparameters: SVR has several hyperparameters that you can adjust to
control the behavior of the model. For example, the ‘C’ parameter controls the
trade-off between the insensitive loss and the sensitive loss. A larger value
of ‘C’ means that the model will try to minimize the insensitive loss more, while a

https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/
https://www.geeksforgeeks.org/support-vector-regression-svr-using-linear-and-non-linear-kernels-in-scikit-learn/
https://www.geeksforgeeks.org/support-vector-regression-svr-using-linear-and-non-linear-kernels-in-scikit-learn/
https://www.geeksforgeeks.org/support-vector-regression-svr-using-linear-and-non-linear-kernels-in-scikit-learn/
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
https://www.geeksforgeeks.org/hyperparameter-tuning/

smaller value of C means that the model will be more lenient in allowing larger
errors.

 Model evaluation: Like any machine learning model, it’s important to evaluate the
performance of an SVR model. One common way to do this is to split the data into
a training set and a test set, and use the training set to fit the model and the test
set to evaluate it. You can then use metrics like mean squared error
(MSE) or mean absolute error (MAE) to measure the error between the predicted
and true output values.

https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/python-mean-squared-error/
https://www.geeksforgeeks.org/python-mean-squared-error/
https://www.geeksforgeeks.org/how-to-calculate-mean-absolute-error-in-python/

 Epsilon insensitive tube: This tube thinks about merging of error that we are allowing our

model to have not care inside the tube mean any point discriminant or distort the line don’t

care because this tube is insensitive. Key behind the support vector model, it’s given the little

bit movement of little bit buffer to our model. Same time we have the points outside the

insensible tube. For them we do care about the error of outside points. Measure the distance

https://www.bing.com/search?q=epsilon+insnesible+tube&FORM=AWRE

form point to tube itself not trained line. There called Slack variables. Minimizing slack variable

distances. Actually, this distance depends on what the tube looks like and how the tube

positioned.

Why this method called support vector regression because all of the points outside the

tube or any point on the path is a vector into two-dimensional space or multi two

dimensional features. We highlighted here outside the tube, they are supporting vector

because they are dictating how the tube structure actually they are support the machine

of the tube. So, this is Support Vector Regression.

Non Linear SVR

SVR can use both linear and non-linear kernels. A linear kernel is a simple dot product
between two input vectors, while a non-linear kernel is a more complex function that can
capture more intricate patterns in the data. The choice of kernel depends on the data’s
characteristics and the task’s complexity.

In scikit-learn package for Python, you can use the ‘SVR’ class to perform SVR with a linear
or non-linear ‘kernel’. To specify the kernel, you can set the kernel parameter
to ‘linear’ or ‘RBF’ (radial basis function).

Section on Kernel SVM:
• SVM Intuition

Kernel SVM Intuition
• Mapping to a higher dimension
• The Kernel Trick
• Types of Kernel Functions

• Non-linear Kernel SVR

Radial basis function kernel (aka squared-exponential kernel).

https://www.geeksforgeeks.org/python-programming-language/

The RBF kernel is a stationary kernel. It is also known as the “squared exponential” kernel. It is

parameterized by a length scale parameter l>0, which can either be a scalar (isotropic variant

of the kernel) or a vector with the same number of dimensions as the inputs X (anisotropic

variant of the kernel). The kernel is given by:

where l is the length scale of the kernel and d(⋅,⋅) is the Euclidean distance.

This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance

function have mean square derivatives of all orders, and are thus very smooth.

RBF kernels are the most generalized form of kernelization and is one of the most
widely used kernels due to its similarity to the Gaussian distribution. The RBF
kernel function for two points X₁ and X₂ computes the similarity or how close they
are to each other. This kernel can be mathematically represented as follows:

where,

1. ‘σ’ is the variance and our hyperparameter

2. ||X₁ - X₂|| is the Euclidean (L₂-norm) Distance between two points X₁ and X₂

Let d₁₂ be the distance between the two points X₁ and X₂, we can now represent

d₁₂ as follows:

Fig 2: Distance between two points in space [Image by Author]

The kernel equation can be re-written as follows:

The maximum value that the RBF kernel can be is 1 and occurs when d₁₂ is 0

which is when the points are the same, i.e. X₁ = X₂.

1. When the points are the same, there is no distance between them and

therefore they are extremely similar

2. When the points are separated by a large distance, then the kernel

value is less than 1 and close to 0 which would mean that the points are

dissimilar

Dataset: Position_Salaries_Court.csv

Position_Salaries_Court

Position Level Salary

Machine Operator 3 32750

Library Attendant 4 41500

Junior Judicial Asst 5 52875

Judicial Asst 7 65000

Senior Judicial Asst 8 78000

Administrative Officer 11 125000

Assistant Register 12 145000

Deputy Register 13 187700

Joint Register 14 247800

Register 15 310500

Python Code for SVR

Support Vector Regression (SVR)

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Importing the dataset

dataset = pd.read_csv('Position_Salaries_Court.csv')

X = dataset.iloc[:, 1:-1].values

y = dataset.iloc[:, -1].values

print(X)

[[3]

 [4]

 [5]

 [7]

 [8]

 [11]

 [12]

 [13]

 [14]

 [15]]

print(y)

[32750 41500 52875 65000 78000 125000 145000 187700 247800 310500]

y = y.reshape(len(y),1)

print(y)

[[32750]

 [41500]

 [52875]

 [65000]

 [78000]

 [125000]

 [145000]

 [187700]

 [247800]

 [310500]]

[**Transformation salary in two-dimension array because standardization for

feature scaling expect two dimension when we apply fit_transform method input

twoD array]

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc_X = StandardScaler()

sc_y = StandardScaler()

X = sc_X.fit_transform(X)

y = sc_y.fit_transform(y)

[**Here we are not using same standard scale object for Salary & Level because compute the

mean and standard deviation different for Position Level & Salary that’s why we are using two

different objects]

print(X)

[[-1.4966941]

 [-1.25529183]

 [-1.01388955]

 [-0.531085]

 [-0.28968273]

 [0.43452409]

 [0.67592637]

 [0.91732864]

 [1.15873092]

 [1.40013319]]

print(y)

[[-1.07054353]

 [-0.97282799]

 [-0.84579779]

 [-0.71039197]

 [-0.5652146]

 [-0.04034256]

 [0.18300725]

 [0.65985908]

 [1.33102524]

 [2.03122688]]

Training the SVR model on the whole dataset

from sklearn.svm import SVR

regressor = SVR(kernel = 'rbf')

regressor.fit(X, y)

[** We didn’t split training set and test set. Here sklearn library; svmmodel; SVRclass;

regressor object is the instance of the class SVR; kernel(parameter)=’rbf’(value)  non-linear

relationship RBF (A radial basis function (RBF) is a real-valued function whose value depends only on the

distance between the input and some fixed point); regressor.fit(X, y) train the whole data

set use fit method]

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143:

DataConversionWarning: A column-vector y was passed when a 1d array was

expected. Please change the shape of y to (n_samples,), for example using

ravel().

 y = column_or_1d(y, warn=True)

Predicting a new result

sc_y.inverse_transform(regressor.predict(sc_X.transform([[6.5]])).reshape(-

1,1))

[** regressor.predict(sc_X.transform([[6.5]]) predict method take input scale value of
transform method twoD array value; sc_y.inverse_transform  Reverse scaling whole
prediction that will give output as Salary. sc_y(object)output; inverse_transform method
reverse transform method; reshape(-1,1) reshape method to avoid format error]

array([[69084.67433045]])

https://www.bing.com/ck/a?!&&p=a097125bdd2e518aJmltdHM9MTcwMTk5MzYwMCZpZ3VpZD0zMWI3NjQzMC0xMzhlLTZjMmItMDZjMi03NzE4MTI3YzZkYTQmaW5zaWQ9NTkyOQ&ptn=3&ver=2&hsh=3&fclid=31b76430-138e-6c2b-06c2-7718127c6da4&psq=radial+base+function&u=a1aHR0cHM6Ly93d3cud2lraXdhbmQuY29tL2VuL1JhZGlhbF9iYXNpc19mdW5jdGlvbg&ntb=1
https://www.bing.com/ck/a?!&&p=a097125bdd2e518aJmltdHM9MTcwMTk5MzYwMCZpZ3VpZD0zMWI3NjQzMC0xMzhlLTZjMmItMDZjMi03NzE4MTI3YzZkYTQmaW5zaWQ9NTkyOQ&ptn=3&ver=2&hsh=3&fclid=31b76430-138e-6c2b-06c2-7718127c6da4&psq=radial+base+function&u=a1aHR0cHM6Ly93d3cud2lraXdhbmQuY29tL2VuL1JhZGlhbF9iYXNpc19mdW5jdGlvbg&ntb=1

Visualising the SVR results

plt.scatter(sc_X.inverse_transform(X), sc_y.inverse_transform(y), color =

'red')

plt.plot(sc_X.inverse_transform(X),

sc_y.inverse_transform(regressor.predict(X).reshape(-1,1)), color = 'blue')

plt.title('Truth or Bluff (SVR)')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

[**sc_X.inverse_transform(X), sc_y.inverse_transform(y) put them original scale

that is reverse transform ;

sc_y.inverse_transform(regressor.predict(X).reshape(-1,1))  same like

prediction for all observation that’s why X]

Visualising the SVR results (for higher resolution and smoother curve)

X_grid = np.arange(min(sc_X.inverse_transform(X)),

max(sc_X.inverse_transform(X)), 0.1)

X_grid = X_grid.reshape((len(X_grid), 1))

plt.scatter(sc_X.inverse_transform(X), sc_y.inverse_transform(y), color =

'red')

plt.plot(X_grid,

sc_y.inverse_transform(regressor.predict(sc_X.transform(X_grid)).reshape(-

1,1)), color = 'blue')

plt.title('Truth or Bluff (SVR)')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

Decision Tree Regression

Decision tree regression is a supervised learning algorithm used for predictive modeling. It is a non-

parametric method that can be used for both classification and regression tasks. The algorithm works by

recursively partitioning the input space into smaller regions, where each region is associated with a predictive

model. The model is constructed by fitting a simple function to the data in each region. The function is typically

a constant value for regression tasks and a majority class for classification tasks. Decision tree regression is

simple to understand and interpret, requires little data preparation, and can handle both numerical and categorical

data.

CART(Classification And Regression Tree) is a variation of the decision tree algorithm. It can handle both classification

and regression tasks. Scikit-Learn uses the Classification And Regression Tree (CART) algorithm to train Decision Trees

(also called “growing” trees).

Dataset: Position_Salaries_Court.csv

Position_Salaries_Court

Position Level Salary

Machine Operator 3 32750

Library Attendant 4 41500

Junior Judicial Asst 5 52875

Judicial Asst 7 65000

Senior Judicial Asst 8 78000

Administrative Officer 11 125000

Assistant Register 12 145000

Deputy Register 13 187700

Joint Register 14 247800

Register 15 310500

Python Code for Decision Regression

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Importing the dataset

dataset = pd.read_csv('Position_Salaries_Court.csv')

X = dataset.iloc[:, 1:-1].values

y = dataset.iloc[:, -1].values

** Don’t have to apply feature scaling because prediction from decision tree regression are

resulting of successive split of data you know different nodes of tree therefore not some

equation like with previous model that why no feature scaling is needed to know split different

values of feature to deferent categories lead to different prediction. So, no feature scaling.

Now, we will go for Training the Decision Tree model on the hole dataset. You can search from

Google decision tree regression class of scikit learn. You can find the name of class probably

1st link. How to build and trained ML model scikit learn and you will learn Training the decision

tree.

Training the Decision Tree Regression model on the whole dataset

from sklearn.tree import DecisionTreeRegressor

regressor = DecisionTreeRegressor(random_state = 0)

regressor.fit(X, y)

** tree  model; DecisionTreeRegressor Class; regressor  object;

Here parameter random_state =0 because if you give parameter then tuning is

required mean optimization required. Later we will learn parameter optimizing.

fit(x,y)  method which take the input matrix of feature x, the whole matrix

then dependent variable y. Actually trained the Decision tree regression

corelation between Position level and Salary.

Predicting a new result

regressor.predict([[6.5]])

O/P: array([65000.])

** predict method only observation 6.5 input as a twoD array that’s why double

bracket.

Visualising the Decision Tree Regression results (higher resolution)

X_grid = np.arange(min(X), max(X), 0.01)

X_grid = X_grid.reshape((len(X_grid), 1))

plt.scatter(X, y, color = 'red')

plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')

plt.title('Truth or Bluff (Decision Tree Regression)')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

O/P:

** Here we are using same code like polynomial regressor but slightly change because no

feature scaling so need not to require transform matrix. So, simple but one thing you can

notice result is not so good because:

Decision tree regression model really is not a best adapted to two-dimension dataset on

feature and dependent variable but implementation very easy. Decision tree splitting the data

through successive nodes. For high dimensional dataset it is very useful.

	Importing the libraries
	Importing the dataset
	Splitting the dataset into the Training set and Test set
	Training the Simple Linear Regression model on the Training set
	Predicting the Test set results
	Visualising the Training set results
	Visualising the Test set results
	What is a Dummy Variable Trap?
	Multiple Linear Regression
	Importing the libraries
	Importing the dataset
	Encoding categorical data
	Splitting the dataset into the Training set and Test set
	Training the Multiple Linear Regression model on the Training set
	Predicting the Test set results

	R-squared
	Adjusted R-squared:
	Importing the libraries
	Importing the dataset
	Training the Linear Regression model on the whole dataset
	Training the Polynomial Regression model on the whole dataset
	Visualising the Linear Regression results
	Visualising the Polynomial Regression results
	Visualising the Polynomial Regression results (for higher resolution and smoother curve)
	Predicting a new result with Linear Regression
	Predicting a new result with Polynomial Regression

	Support Vector Regression (SVR) using Linear and Non-Linear Kernels in Scikit Learn
	Concepts related to the Support vector regression (SVR):

	Support Vector Regression (SVR)
	Importing the libraries
	Importing the dataset
	Feature Scaling
	Training the SVR model on the whole dataset
	Predicting a new result
	Visualising the SVR results
	Visualising the SVR results (for higher resolution and smoother curve)
	Importing the libraries (1)
	Importing the dataset (1)
	Training the Decision Tree Regression model on the whole dataset
	Predicting a new result (1)
	Visualising the Decision Tree Regression results (higher resolution)

