
Reinforcement Learning 

Reinforcement learning (RL) is defined as a sub-field of machine 

learning that enables AI-based systems to take actions in a dynamic 

environment through trial and error methods to maximize the collective 

rewards based on the feedback generated for respective actions. This 

article explains reinforcement learning, how it works, its algorithms, and 

some real-world uses. 

Reinforcement Learning is a powerful branch of Machine Learning. It 

is used to solve interacting problems where the data observed up to time t is 

considered to decide which action to take at time t + 1. It is also used for 

Artificial Intelligence when training machines to perform tasks such as 

walking. Desired outcomes provide the AI with reward, undesired with 

punishment. Machines learn through trial and error. 

RL optimizes AI-driven systems by imitating natural intelligence that 

emulates human cognition. Such a learning approach helps computer 

agents make critical decisions that achieve astounding results in the 

intended tasks without the involvement of a human or the need for 

explicitly programming the AI systems. 

Some known RL methods that have added a subtle dynamic element to 

conventional ML methods include Monte Carlo, state–action–reward–

state–action (SARSA), and Q-learning. AI models trained over 

reinforcement learning algorithms have defeated human counterparts in 

several video games and board games, including chess and Go. 

Technically, RL implementations can be classified into three types: 

 Policy-based: This RL approach aims to maximize the system 

reward by employing deterministic policies, strategies, and 

techniques. 

 Value-based: Value-based RL implementation intends to 

optimize the arbitrary value function involved in learning. 

 Model-based: The model-based approach enables the creation 

of a virtual setting for a specific environment. Moreover, the 



participating system agents perform their tasks within these 

virtual specifications. 

A typical reinforcement learning model can be represented by: 

 

Here are some important terms used in Reinforcement AI: 

 Agent: It is an assumed entity which performs actions in an 
environment to gain some reward. 

 Environment (e): A scenario that an agent has to face. 
 Reward (R): An immediate return given to an agent when he or 

she performs specific action or task. 
 State (s): State refers to the current situation returned by the 

environment. 
 Policy (π): It is a strategy which applies by the agent to decide 

the next action based on the current state. 
 Value (V): It is expected long-term return with discount, as 

compared to the short-term reward. 
 Value Function: It specifies the value of a state that is the total 

amount of reward. It is an agent which should be expected 
beginning from that state. 

 Model of the environment: This mimics the behaviour of the 
environment. It helps you to make inferences to be made and 
also determine how the environment will behave. 



 Model based methods: It is a method for solving reinforcement 
learning problems which use model-based methods. 

 Q value or action value (Q): Q value is quite similar to value. The 
only difference between the two is that it takes an additional 
parameter as a current action. 

 

\ 

 

Types of Reinforcement Learning 
Two types of reinforcement learning methods are: 

Positive: 

It is defined as an event, that occurs because of specific behavior. It 
increases the strength and the frequency of the behavior and impacts 
positively on the action taken by the agent. 

This type of Reinforcement helps you to maximize performance and 
sustain change for a more extended period. However, too much 
Reinforcement may lead to over-optimization of state, which can 
affect the results. 

Negative: 

Negative Reinforcement is defined as strengthening of behavior that 
occurs because of a negative condition which should have stopped or 
avoided. It helps you to define the minimum stand of performance. 



However, the drawback of this method is that it provides enough to 
meet up the minimum behavior. 

Learning Models of Reinforcement 
There are two important learning models in reinforcement learning: 

 Markov Decision Process 
 Q learning 

Markov Decision Process 

The following parameters are used to get a solution: 

 Set of actions- A 
 Set of states -S 
 Reward- R 
 Policy- n 
 Value- V 

The mathematical approach for mapping a solution in reinforcement 
Learning is recon as a Markov Decision Process or (MDP). 

 

 

Q-Learning 
 



Q-learning is an off-policy and model-free type algorithm that learns from 

random actions (greedy policy). ‘Q’ in Q-learning refers to the quality of 

activities that maximize the rewards generated through the algorithmic 

process. 

 

Policy iteration refers to policy improvement or refinement through 

actions that amplify the value function. In a value iteration, the values of 

the value function are updated. Mathematically, Q-learning is represented 

by the formula: 

Q(s,a) = (1-α).Q(s,a) + α.(R + γ.max(Q(S2,a)). 

Where, 

alpha = learning rate, 

gamma = discount factor, 

R = reward, 

S2 = next state. 

Q(S2,a) = future value. 
 

 

Markov Decision Processes 

 

 Markov decision processes formally describe an environment for 

reinforcement learning. 

 Where the environment is fully observable i.e. The current state 

completely characterises the process  

 Almost all RL problems can be formalised as MDPs, e.g. Optimal 

control primarily deals with continuous MDPs  

 Partially observable problems can be converted into MDPs  

 Bandits are MDPs with one state 

“The future is independent of the past given the present” 

Definition: A state St is Markov if and only if  

P [St+1 | St ] = P [St+1 | S1, ..., St ] 

 The state captures all relevant information from the history  



 Once the state is known, the history may be thrown away  

 i.e. The state is a sufficient statistic of the future 

State Transition Matrix: 

For a Markov state s and successor state s’ , the state transition 

probability is defined by  

Pss’ = P [St+1 = s’ | St = s]  State transition matrix P defines transition 

probabilities from all states s to all successor states s’, 

 

where each row of the matrix sums to 1. 

 

Markov Process: 

A Markov process is a memoryless random process, i.e. a sequence of 

random states S1, S2, ... with the Markov property. 

Definition 

A Markov Process (or Markov Chain) is a tuple (S,P)  

S is a (finite) set of states  

P is a state transition probability matrix,  

Pss’ = P [St+1 = s’ | St = s] 

 

 

Multi-Armed Bandit Problem 

The multi-armed bandit problem is a problem in which a decision maker 

iteratively selects one of multiple fixed choices when the properties of 
each choice are only partially known. The problem is named after a 

gambler who must choose which of slot machines to play. The goal is 

to maximize the expected reward or payoff over time. The problem 

arises in various fields such as probability theory, machine learning, and 
resource allocation. 
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The multi-armed bandit problem is a fascinating concept in probability theory and machine 

learning. Imagine a gambler standing in front of a row of slot machines (sometimes called 

“one-armed bandits”). The gambler has to decide which machines to play, how many times to 

play each machine, and in which order to play them. The goal is to maximize the total 

rewards earned through a sequence of lever pulls. Let’s dive into the details: 

1. Problem Description: 

o The multi-armed bandit problem involves a decision maker who iteratively 

selects one of multiple fixed choices (referred to as “arms” or “actions”). 

o The properties of each choice are only partially known at the time of 

allocation and may become better understood as time passes. 

o Importantly, choosing an arm does not affect the properties of that arm or 

other arms. 

 

 

 



 

  



 

 

 

 

Which one is getting the most click.  

Vertical axis put them horizontally. 



 

Vertical axis put them horizontally. 

 

Create a confidence band will include actual return or expected return. We pick the 

machine with highest confidence bound. Red dotted line is observed average. 

Confidence interval become smaller. Observed average value long run converge to 

expected actual return.   



 

D5 very close to final solution. Exploring this one because we found out that is the 

best one. 

 

That how it solves the multi arm bandit problem.  

  



Here we are implementing UCB (Upper Confidence bound) algorithms. It is one of 

the most exciting branches of ML. It’s one of the closes to Artificial Intelligence in the 

sense we are making some program that make action just like Robot. Here we will 

implement two of the best Reinforcement Learning Model which are UCB and 

Thompson Sampling. We will implement UCB applied on Business case study. Brand 

new SUV car, the car company trying to optimize the targeting things to 

classification. This time we will optimize online advertising meaning we are going to 

find best Ad among the different advertisement. The best Ad it will convert maximum 

customer click on that Ad.  

Lets start upper confidence bound:  

Dataset: Sale the SUV Car. Optimize the click through rate some Advertisement 

make for this car. Advertisement prepare 10 different Ad mean 10 different design. 

Advertiser team wonder which Ad is attract most people. Click the Ad then potentially 

SUV. 10 different Ad process online. Online connect through some website or search 

engine. One of the Ad each time connect the webpage and record the result user 

click yes or no the Ad. In our data lot of user, 10 thousand users. It’s a real time 

process mean dynamic process. Simulation exactly given by the dataset. User click 

any Ad then 1 otherwise 0. This is the only way UCB algorithm rum on simulation to 

figure out highest convergent rate. Identify that’s the Ad, user click the most. We 

need to figure out minimum number of round which   

  

  



Upper Confidence Bound (UCB) in Python: 

Importing the libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

 

Importing the dataset 

dataset = pd.read_csv('Ads_CTR_Optimisation.csv') 

 

Implementing UCB 

import math 

N = 10000 

d = 10 

ads_selected = [] 

numbers_of_selections = [0] * d 

sums_of_rewards = [0] * d 

total_reward = 0 

for n in range(0, N): 

    ad = 0 

    max_upper_bound = 0 

    for i in range(0, d): 

        if (numbers_of_selections[i] > 0): 

            average_reward = sums_of_rewards[i] / 

numbers_of_selections[i] 

            delta_i = math.sqrt(3/2 * math.log(n + 1) / 

numbers_of_selections[i]) 

            upper_bound = average_reward + delta_i 

        else: 

            upper_bound = 1e400 

        if upper_bound > max_upper_bound: 

            max_upper_bound = upper_bound 

            ad = i 

    ads_selected.append(ad) 

    numbers_of_selections[ad] = numbers_of_selections[ad] + 1 

    reward = dataset.values[n, ad] 

    sums_of_rewards[ad] = sums_of_rewards[ad] + reward 

    total_reward = total_reward + reward 

 

**  
import math  use of square root function; 

N = 10000  total number of users;  

Here d = 10  number of Ads;  

ads_selected = []   that is empty list initialize for total Ads selected from 

the full list; 



numbers_of_selections = [0] * d   Number selection initialize with ten 

zeroes but expressed as multiple with d mean 10; list as list of ten zeroes. 

sums_of_rewards = [0] * d    each Ad sum of rewards initial zero because 

no Ad was selected initial.  

total_reward = 0 (final variable)total reward accumulated over the 

round; after 1st round no reward collected; 

 

for n in range(0, N):  Iterative for loop start from 1st user to 

10000th user mean last user but python index start from 0;   

ad = 0  initialize 1st Ad; we need each of the Ad upper 

confidence bound; 

max_upper_bound = 0  introduce new variable maximum upper 

confidence bound; 

 for i in range(0, d):   second for loop iterate from Ad1 to Ad10 

d=10; 

 then we implement step-2 from Upper Confidence Bound Algorithm 

 

start with UCB Algorithm Step:2  

 

if Ni(n)= Zero then Bar ri(n)is infinity, meaning less  

 

if (numbers_of_selections[i] > 0):  therefore at least Ad selected. 

Mean Ni(n)>0, Average of the reward at least selected. 

 

average_reward = sums_of_rewards[i] / numbers_of_selections[i]  that 

is the average reward of ad I up to round n; 

 Now we will compute confidence interval: 

delta_i = math.sqrt(3/2 * math.log(n + 1) / numbers_of_selections[i]) 

 Sqrt function use then math.log mean logarithm function use but 

value of n start in for loop is 0 to N. If 0 then valuie of log(0) 

mean – infinite. It is very dangerous that why we write  log(n+1) 

mean if n=0 then log(1) mean 0.  

 

 

 

Now final value we have to compute:  



  

So, average reward + delta I (confidential interval) 

upper_bound = average_reward + delta_i 

 

second for loop we are implementing Step-2 but step-3 not because this 

step-3 select the ad I that has maximum UCB. 

UCB Algorithm we have to atlest select Ad in first round. 

else:  ad not been selected yet. We have to do Ad must be selected. 

upper_bound = 1e400  upper_bound select supper high value 10 to the 

power of 400. So, that we have not selected then maximum upper bound 

should be there.  

 

Now implementing step-3 maximum of UCB: 

 

 

 

Now we will finish the step-3 by updating the variables:  

ads_selected.append(ad)  update the ads_selected variable; 

numbers_of_selections[ad] = numbers_of_selections[ad] + 1  number of 

selection increment by 1; 

 

reward = dataset.values[n, ad]  reward that is collected after 

showing the ad of user n. reward is collected each round; 

sums_of_rewards[ad] = sums_of_rewards[ad] + reward cumulated reward  

    total_reward = total_reward + reward  total reward we get upto 

round n. so, update total reward variable update after add reward. 

 

 

 

    

Visualising the results 

plt.hist(ads_selected) 

plt.title('Histogram of ads selections') 

plt.xlabel('Ads') 

plt.ylabel('Number of times each ad was selected') 

plt.show() 

 

 

** Histogram plots each of the Ad (index 0 to 9) number time selected.   

plt.hist(ads_selected)  histogram function and parameter is 

ads_selected mean Ads Index 0 to 9 round 10,000. 

 

Output is below: 

 



 

We should experience to see actually how many round UCB algorithm was able to 

identify this Ad highest CT Bar. The way to check this change the value of N (number 

of rounds). Here this algorithm with run 10,000 rounds. Now we will change the value 

N  to 5,000. Then output:  

  

Even UCB can identify the highest CT Ad. 



Replace 5000 by 1000 then restart and run:  

 

Still able to identify the Ad.  Now try for 500. Restart and run: 

 

So, 500 round is not enough for UCB Algorithm to identify best Ad with highest CTR. 

Here we can’t identify because highest CTR is Ad7. 500 round not enough for UCB.  

Finally we will see Thomson Sampling can identify or not. 
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